Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    Access Status
    Fulltext not available
    Authors
    Tani, K.
    Dunkley, Daniel
    Chang, Q.
    Nichols, A.
    Shukuno, H.
    Hirahara, Y.
    Ishizuka, O.
    Arima, M.
    Tatsumi, Y.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tani, K. and Dunkley, D. and Chang, Q. and Nichols, A. and Shukuno, H. and Hirahara, Y. and Ishizuka, O. et al. 2015. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting. Earth and Planetary Science Letters. 424: pp. 84-94.
    Source Title
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2015.05.019
    ISSN
    0012-821X
    URI
    http://hdl.handle.net/20.500.11937/60339
    Collection
    • Curtin Research Publications
    Abstract

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

    Related items

    Showing items related by title, author, creator and subject.

    • The recycling of chromitites in ophiolites from southwestern North America
      González-Jiménez, J.; Camprubí, A.; Colás, V.; Griffin, W.; Proenza, J.; O'Reilly, S.; Centeno-García, E.; García-Casco, A.; Belousova, E.; Talavera, Cristina; Farré-de-Pablo, J.; Satsukawa, T. (2017)
      © 2017 Elsevier B.V. Podiform chromitites occur in mantle peridotites of the Late Triassic Puerto Nuevo Ophiolite, Baja California Sur State, Mexico. These are high-Cr chromitites [Cr# (Cr/Cr + Al atomic ratio = 0.61–0.69)] ...
    • Recycling oceanic crust for continental crustal growth: Sr–Nd–Hf isotope evidence from granitoids in the western Junggar region, NW China
      Tang, G.; Wang, Q.; Wyman, D.; Li, Zheng-Xiang; Xu, Y.; Zhao, Z. (2012)
      The juvenile component of accretionary orogenic belts has been declining since the Archean. As a result, there is often controversy regarding the contribution of oceanic basalts to Phanerozoic crustal growth, as in the ...
    • Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese
      Jiang, Z.; Wang, Qiang; Wyman, D.; Li, Zheng-Xiang; Yang, J.; Shi, X.; Ma, L.; Tang, G.; Gou, G.; Jia, X.; Guo, H. (2014)
      Little is known about the detailed processes associated with the transition from oceanic to continental lithosphere subduction in the Gangdese Belt of southern Tibet (GBST). Here, we report zircon U–Pb age, major and trace ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.