Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Numerical study of using RDHDS connected PIP system to mitigate earthquake induced subsea pipeline vibrations

    Access Status
    Fulltext not available
    Authors
    Bi, Kaiming
    Hao, Hong
    Date
    2017
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Bi, K. and Hao, H. 2017. Numerical study of using RDHDS connected PIP system to mitigate earthquake induced subsea pipeline vibrations, in Hao, H. and Zhang, C. (eds), Proceedings of the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24), Dec 6-9 2016, pp. 1615-1620. Perth: ACMSM.
    Source Title
    Mechanics of Structures and Materials: Advancements and Challenges - Proceedings of the 24th Australasian Conference on the Mechanics of Structures and Materials, ACMSM24 2016
    ISBN
    9781138029934
    School
    School of Civil and Mechanical Engineering (CME)
    URI
    http://hdl.handle.net/20.500.11937/60942
    Collection
    • Curtin Research Publications
    Abstract

    Pipe-In-Pipe (PIP) systems have been increasingly used in the subsea pipeline applications recently. By replacing the hard centralizers with the softer springs and dashpots to connect the inner and outer pipes, a PIP system can be considered as a structure-Tuned Mass Damper (TMD) system. It therefore has the potential to mitigate subsea pipeline vibrations when subjected to different vibration sources such as vortex shedding and/or earthquake excitations. This paper proposes using Rotational Friction Hinge Dampers with Springs (RFHDSs) to connect the inner and outer pipes. The Rotational Friction Hinge Dampers (RFHDs) are used to absorb the energy induced by the external vibration sources and the springs are used to provide the stiffness to the TMD system and to restore the original locations of the inner and outer pipes. To investigate the effectiveness of this new design concept, detailed three-dimensional (3D) Finite Element (FE) model of the RFHD is developed in ANSYS and the hysteretic behavior of RFHD is firstly studied. The calculated hysteretic loop is then applied to the 3D PIP FE model to estimate the seismic response. The effectiveness of the proposed system to mitigate earthquake induced vibrations is examined by comparing the seismic response of the proposed system with the traditional PIP system.

    Related items

    Showing items related by title, author, creator and subject.

    • Using pipe-in-pipe systems for subsea pipeline vibration control
      Bi, Kaiming; Hao, Hao (2016)
      Pipe-in-pipe (PIP) systems are increasingly used in subsea pipeline applications due to their favourable thermal insulation capacity. Pipe-in-pipe systems consist of concentric inner and outer pipes, the inner pipe carries ...
    • A smart pipe energy harvester excited by fluid flow and base excitation
      Lumentut, Mikail; Friswell, M. (2018)
      This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input base excitation for generating the electrical energy. We believe ...
    • Effectiveness of Using RFHDS Connected PIP System for Subsea Pipeline Vibration Control
      Bi, Kaiming; Hao, Hong; Chen, Wensu (2018)
      Pipe-in-pipe (PIP) system can be considered as a structure-tuned mass damper (TMD) system by replacing the hard centralizers by the softer springs and dashpots to connect the inner and outer pipes. With properly designed ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.