Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A smart pipe energy harvester excited by fluid flow and base excitation

    71832.pdf (2.229Mb)
    Access Status
    Open access
    Authors
    Lumentut, Mikail
    Friswell, M.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lumentut, M. and Friswell, M. 2018. A smart pipe energy harvester excited by fluid flow and base excitation. Acta Mechanica. 229 (11): pp. 4431-4458.
    Source Title
    Acta Mechanica
    DOI
    10.1007/s00707-018-2235-y
    ISSN
    0001-5970
    School
    School of Civil and Mechanical Engineering (CME)
    Remarks

    The final publication is available at Springer via https://doi.org/10.1007/s00707-018-2235-y

    URI
    http://hdl.handle.net/20.500.11937/71589
    Collection
    • Curtin Research Publications
    Abstract

    This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input base excitation for generating the electrical energy. We believe that this work shows the first attempt to formulate a unified analytical approach of flow-induced vibrational smart pipe energy harvester in application to the smart sensor-based structural health monitoring systems including those to detect flutter instability. The arbitrary topology of the thin electrode segments located at the surface of the circumference region of the smart pipe has been used so that the electric charge cancellation can be avoided. The analytical techniques of the smart pipe conveying fluid with discontinuous piezoelectric segments and proof mass offset, connected with the standard AC–DC circuit interface, have been developed using the extended charge-type Hamiltonian mechanics. The coupled field equations reduced from the Ritz method-based weak form analytical approach have been further developed to formulate the orthonormalised dynamic equations. The reduced equations show combinations of the mechanical system of the elastic pipe and fluid flow, electromechanical system of the piezoelectric component, and electrical system of the circuit interface. The electromechanical multi-mode frequency and time signal waveform response equations have also been formulated to demonstrate the power harvesting behaviours. Initially, the optimal power output due to optimal load resistance without the fluid effect is discussed to compare with previous studies. For potential application, further parametric analytical studies of varying partially piezoelectric pipe segments have been explored to analyse the dynamic stability/instability of the smart pipe energy harvester due to the effect of fluid and input base excitation. Further proof between case studies also includes the effect of variable flow velocity for optimal power output, 3-D frequency response, the dynamic evolution of the smart pipe system based on the absolute velocity-time waveform signals, and DC power output-time waveform signals.

    Related items

    Showing items related by title, author, creator and subject.

    • Network segmentations of smart plate structure with attached mass and dynamic motions
      Lumentut, Mikail ; Shu, Yi-Chung (2020)
      This paper focuses on the primary development of novel analytical and numerical studies for the smart plate structure due to the effects of point mass locations, dynamic motions, and network segmentations. Instead of the ...
    • Mathematical dynamics of electromechanical piezoelectric energy harvesters
      Lumentut, Mikail F. (2011)
      This research investigates vibration energy harvesting by modelling several piezoelectric-based structures. The usage of piezoelectric transduction under input vibration environments can be profitable for obtaining ...
    • Powering smart pipes with fluid flow: Effect of velocity profiles
      Lumentut, Mikail ; Friswell, M.I. (2022)
      The dynamics of elastic cantilevered smart pipes conveying fluid with non-uniform flow velocity profiles is presented for optimal power generation. The Navier-Stokes equations are used to model the incompressible flow in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.