Show simple item record

dc.contributor.authorQiu, Z.
dc.contributor.authorHu, Y.
dc.contributor.authorTan, X.
dc.contributor.authorHashim, S.
dc.contributor.authorSunarso, J.
dc.contributor.authorLiu, Shaomin
dc.identifier.citationQiu, Z. and Hu, Y. and Tan, X. and Hashim, S. and Sunarso, J. and Liu, S. 2018. Oxygen permeation properties of novel BaCo0.85Bi0.05Zr0.1O3−δ hollow fibre membrane. Chemical Engineering Science. 177: pp. 18-26.

In this work, we characterized and tested the oxygen permeation properties of BaCo 0.85 Bi 0.05 Zr 0.1 O 3-d (BCBZ) hollow fibre membranes fabricated by a combined phase inversion for spinning and sintering route using polyetherimide (PEI) as the polymer binder. The powder X-ray diffraction results showed that the BCBZ powder for spinning had to be calcined at around 950 °C to form a hexagonal phase structure, while the hollow fibre precursors were sintered at 1150–1200 °C to form the cubic perovskite structure for oxygen permeation. It displayed the highest oxygen flux of 7.3 cm 3 (STP) cm -2 min -1 at 950 °C under an air/He gradient. The theoretical correlation of the oxygen fluxes at different operating conditions showed that the oxygen permeation through BCBZ fibre was limited by surface exchange reactions. Carbon dioxide (CO 2 ) resistance of BCBZ hollow fibre was tested by exposing it to alternating different sweep gas containing helium (He), 20% CO 2 in He, 80% CO 2 in He, and pure He. Despite the significant reduction in oxygen fluxes upon subjected to CO 2 -containing sweep gases due to the strong CO 2 sorption on the membrane surface, no permanent damage on the membrane was detected and the original flux could be recovered at the end of the 105-h test once the sweep gas was switched back to helium. This result clearly highlights the high CO 2 resistance of BCBZ hollow fibre membrane due to the presence of Zr 4+ with higher acidity than Co 2+ in BCBZ perovskite lattice. High CO 2 tolerance enables the membrane use as membrane reactors for more advanced applications where the presence of CO 2 -containing atmosphere is unavoidable.

dc.titleOxygen permeation properties of novel BaCo0.85Bi0.05Zr0.1O3−δ hollow fibre membrane
dc.typeJournal Article
dcterms.source.titleChemical Engineering Science
curtin.departmentWASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record