Catalysts of self-assembled Pt@CeO2−δ-rich core-shell nanoparticles on 3D ordered macroporous Ce1−xZrxO2for soot oxidation: nanostructure-dependent catalytic activity
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© The Royal Society of Chemistry. The catalytic performance in heterogeneous catalytic reactions consisting of solid reactants is strongly dependent on the nanostructure of the catalysts. Metal-oxides core-shell (MOCS) nanostructures have potential to enhance the catalytic activity for soot oxidation reactions as a result of optimizing the density of active sites located at the metal-oxide interface. Here, we report a facile strategy for fabricating nanocatalysts with self-assembled Pt@CeO 2−δ -rich core-shell nanoparticles (NPs) supported on three-dimensionally ordered macroporous (3DOM) Ce 1−x Zr x O 2 via the in situ colloidal crystal template (CCT) method. The nanostructure-dependent activity of the catalysts for soot oxidation were investigated by means of SEM, TEM, H 2 -TPR, XPS, O 2 -isothermal chemisorption, soot-TPO and so on. A CeO 2−δ -rich shell on a Pt core is preferentially separated from Ce 1−x Zr x O 2 precursors and could self-assemble to form MOCS nanostructures. 3DOM structures can enhance the contact efficiency between catalysts and solid reactants (soot). Pt@CeO 2−δ -rich core-shell nanostructures can optimize the density of oxygen vacancies (O v ) as active sites located at the interface of Pt-Ce 1−x Zr x O 2 . Remarkably, 3DOM Pt@CeO 2−δ -rich/Ce 1−x Zr x O 2 catalysts show super catalytic performance and strongly nanostructure-dependent activity for soot oxidation in the absence of NO and NO 2 . For example, the T 50 of the 3DOM Pt@CeO 2−δ -rich/Ce 0.8 Zr 0.2 O 2 catalyst is lowered down to 408 °C, and the reaction rate of the 3DOM Pt@CeO 2−δ -rich/Ce 0.2 Zr 0.8 O 2 catalyst (0.12 μmol g −1 s −1 ) at 300 °C is 4 times that of the 3DOM Pt/Ce 0.2 Zr 0.8 O 2 catalyst (0.03 μmol g −1 s −1 ). The structures of 3DOM Ce 1−x Zr x O 2 -supported Pt@CeO 2−δ -rich core-shell NPs are decent systems for deep oxidation of solid reactants or macromolecules, and this facile technique for synthesizing catalysts has potential to be applied to other element compositions.
Related items
Showing items related by title, author, creator and subject.
-
Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin (2018)Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free ...
-
Cheng, Yi; Shen, P.; Saunders, M.; Jiang, San Ping (2015)Ternary alloy PtRuCox nanoparticles (NPs) with Co-rich core and PtRu skinned shell on carbon nanotubes (CNTs) have been successfully synthesized as electrocatalysts for methanol oxidation reaction (MOR) of direct methanol ...
-
Cheng, Yi; Shen, P.; Saunders, M.; Jiang, San Ping (2015)© 2015 Elsevier Ltd. Ternary alloy PtRuCox nanoparticles (NPs) with Co-rich core and PtRu skinned shell on carbon nanotubes (CNTs) have been successfully synthesized as electrocatalysts for methanol oxidation reaction ...