Show simple item record

dc.contributor.authorZhang, J.
dc.contributor.authorLiu, Jian
dc.contributor.authorLu, S.
dc.contributor.authorZhu, H.
dc.contributor.authorAili, D.
dc.contributor.authorDe Marco, Roland
dc.contributor.authorXiang, Y.
dc.contributor.authorForsyth, M.
dc.contributor.authorLi, Q.
dc.contributor.authorJiang, S.
dc.date.accessioned2018-02-06T06:16:28Z
dc.date.available2018-02-06T06:16:28Z
dc.date.created2018-02-06T05:49:51Z
dc.date.issued2017
dc.identifier.citationZhang, J. and Liu, J. and Lu, S. and Zhu, H. and Aili, D. and De Marco, R. and Xiang, Y. et al. 2017. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells. ACS Applied Materials and Interfaces. 9 (37): pp. 31922-31930.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/63314
dc.identifier.doi10.1021/acsami.7b09591
dc.description.abstract

© 2017 American Chemical Society. As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

dc.publisherAmerican Chemical Society
dc.relation.urihttps://orbit.dtu.dk/en/publications/ion-exchange-induced-selective-etching-for-the-synthesis-of-amino
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP150102025
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP150102044
dc.titleIon-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells
dc.typeJournal Article
dcterms.source.volume9
dcterms.source.number37
dcterms.source.startPage31922
dcterms.source.endPage31930
dcterms.source.issn1944-8244
dcterms.source.titleACS Applied Materials and Interfaces
curtin.departmentDepartment of Chemical Engineering
curtin.accessStatusOpen access via publisher


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record