Automated crater detection and counting using the hough transform
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2014 IEEE. A manual process for detecting and counting craters on the surface of a planetary body becomes impractical when attempting to survey a large surface area. Similarly, existing automated methods that are effective for specific areas of focus are also impractical for a large data set. We report on the work completed so far in developing a crater detection system to automatically detect craters down to sub-km sizes, across a large portion of a planetary surface. Specifically, we assess the performance of a Hough Transform (HT) for the application and in particular the influence of its preprocessing edge detection phase. Tests are performed on high resolution images of the Martian surface, anticipating a large scale crater counting application for crater chronology on the surface of Mars.
Related items
Showing items related by title, author, creator and subject.
-
Lagain, Anthony ; Servis, Konstantinos; Benedix, Gretchen ; Norman, Christopher; Anderson, Seamus; Bland, Philip (2021)Determining when an impact crater formed is a complex and tedious task. However, this knowledge is crucial to understanding the geological history of planetary bodies and, more specifically, gives information on erosion ...
-
Lagain, Anthony ; Benedix-Bland, Gretchen; Bland, Philip; Towner, Martin; Norman, Chris; Paxman, Jonathan; Chai, Kevin; Meka, Shiv; Anderson, Seamus (2019)Counting impact craters on surfaces of terrestrial bodies is currently the only way to estimate the age of a planetary surface and the duration of geological processes occurred in the past. This approach requires a tedious ...
-
Fairweather, John ; Lagain, Anthony ; Servis, K.; Benedix, Gretchen ; Kumar, S.S.; Bland, Phil (2022)Impact craters are the most common feature on the Moon’s surface. Crater size–frequency distributions provide critical insight into the timing of geological events, surface erosion rates, and impact fluxes. The impact ...