Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants

    Access Status
    Fulltext not available
    Authors
    Shao, P.
    Tian, J.
    Yang, F.
    Duan, Xiaoguang
    Gao, S.
    Shi, W.
    Luo, X.
    Cui, F.
    Luo, S.
    Wang, Shaobin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shao, P. and Tian, J. and Yang, F. and Duan, X. and Gao, S. and Shi, W. and Luo, X. et al. 2018. Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. Advanced Functional Materials.
    Source Title
    Advanced Functional Materials
    DOI
    10.1002/adfm.201705295
    ISSN
    1616-301X
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/65926
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nanodiamonds exhibit great potential as green catalysts for remediation of organic contaminants. However, the specific active site and corresponding oxidative mechanism are unclear, which retard further developments of high-performance catalysts. Here, an annealing strategy is developed to accurately regulate the content of ketonic carbonyl groups on nanodiamonds; meanwhile other structural characteristics of nanodiamonds remain almost unchanged. The well-defined nanodiamonds with well-controlled ketonic carbonyl groups exhibit excellent catalytic activity in activation of peroxymonosulfate for oxidation of organic pollutants. Based on the semi-quantitative and quantitative correlations of ketonic carbonyl groups and the reaction rate constants, it is conclusively determined that ketonic carbonyl groups are the catalytically active sites. Different from conventional oxidative systems, reactive oxygen species in nanodiamonds at peroxymonosulfate system are revealed to be singlet oxygen with high selectivity, which can effectively oxidize and mineralize the target contaminants. Impressively, the singlet-oxygen-mediated oxidation system significantly outperforms the classical radicals-based oxidation system in remediation of actual wastewater. This work not only provides a valuable insight for the design of new nanocarbon catalysts with abundant active sites but also establishes a very promising catalytic oxidation system for the green remediation of actual contaminated water.

    Related items

    Showing items related by title, author, creator and subject.

    • Metal-Free Carbocatalysis in Advanced Oxidation Reactions
      Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin (2018)
      Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free ...
    • Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation
      Duan, X.; Ao, Z.; Zhou, L.; Sun, Hongqi; Wang, G.; Wang, S. (2016)
      © 2016 Elsevier B.V. Metal-free activation of superoxides provides an efficient and environmentally benign strategy for heterogeneous catalytic oxidation. In this study, nanocarbons with varying carbon-conjugation structures ...
    • Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons
      Duan, X.; Sun, Hongqi; Kang, J.; Wang, Yuxian; Indrawirawan, S.; Wang, Shaobin (2015)
      A variety of dimensional-structured nanocarbons were applied for the first time as metal-free catalysts to activate persulfate (PS) for catalytic oxidation of phenolics and dyes as well as their degradation intermediates. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.