Show simple item record

dc.contributor.authorAmankwah, A.
dc.contributor.authorAldrich, Chris
dc.contributor.editorna
dc.date.accessioned2018-04-30T02:39:37Z
dc.date.available2018-04-30T02:39:37Z
dc.date.created2018-04-16T07:41:31Z
dc.date.issued2011
dc.identifier.citationAmankwah, A. and Aldrich, C. 2011. Automatic ore image segmention using mean shift and watershed transform, in na (ed), 21st International Conference Radioelektronika 2011, Apr 19 2011. Brno, Czech Republic: IEEE Computer Society.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/66204
dc.description.abstract

In this paper, we present a novel method for segmenting ore images specifically for estimating the size distribution of ore material on conveyer belt. The segmentation system uses the mean shift and watershed algorithm. The mean shift algorithm is used to identify pixel clusters of particular modes of the probability density function of the image data. The pixel clusters are then used to generate markers for the watershed transform and shadow areas in ore image. Experimental results show that the proposed algorithm is not only faster than the standard methods but also more robust.

dc.publisherIEEE Computer Society
dc.titleAutomatic ore image segmention using mean shift and watershed transform
dc.typeConference Paper
dcterms.source.issn2158-5873
dcterms.source.titleInternational Workshop on Image Analysis for Multimedia Interactive Services
dcterms.source.seriesInternational Workshop on Image Analysis for Multimedia Interactive Services
dcterms.source.conference21st International Conference Radioelektronika 2011
dcterms.source.conference-start-dateApr 19 2011
dcterms.source.conferencelocationBrno, Czech Republic
dcterms.source.placeCzech Republic
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record