Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Amino-functionalized mesoporous silica based polyethersulfone-polyvinylpyrrolidone composite membrane for elevated temperature fuel cells

    Access Status
    Fulltext not available
    Authors
    Zhang, Jin
    Lu, Shanfu
    Zhu, H.
    Chen, K.
    Liu, J.
    Xiang, Y.
    Forsyth, M.
    Jianga, S.
    Date
    2016
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Zhang, J. and Lu, S. and Zhu, H. and Chen, K. and Liu, J. and Xiang, Y. and Forsyth, M. et al. 2016. Amino-functionalized mesoporous silica based polyethersulfone-polyvinylpyrrolidone composite membrane for elevated temperature fuel cells, pp. 581-588.
    Source Title
    ECS Transactions
    DOI
    10.1149/07514.0581ecst
    ISBN
    9781607685395
    School
    Department of Civil Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150102025
    http://purl.org/au-research/grants/arc/DP150102044
    URI
    http://hdl.handle.net/20.500.11937/66225
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 The Electrochemical Society. Inorganic-organic nanostructured hybrid membranes based on polyethersulfone (PES)-polyvinylpyrrolidone (PVP) were prepared with mesoporous silica materials. All the hybrid membranes showed the similar phosphoric acid (PA) uptake. However, the proton conductivity of the PA-PES-PVP membrane was significantly increased after the addition of the inorganic fillers, especially for the amino-functionalized hollow mesoporous silica (NH2-HMS). The cell performance test also confirmed the superiority of the PES-PVP membranes with the inorganic fillers. The highest peak power density at 180 oC reached up to 480 mW cm-2 for the NH2-HMS based composite membrane fuel cell, which is 92.7 % higher than that of the PA-PES-PVP membrane fuel cell at the identical condition. The outstanding performance of the inorganic-organic hybrid membranes might be due to the facilitated proton transportation in the ordered mesoporous channels, and the great water retention of the inorganic fillers.

    Related items

    Showing items related by title, author, creator and subject.

    • Mesoporous materials for fuel cells
      Zhang, J.; Jiang, San Ping (2016)
      Fuel cell is the most efficient and environmentally friendly energy conversion technology to directly convert the chemical energy of fuels such as hydrogen, methane, methanol, ethanol and hydrocarbons into electricity ...
    • Amino-functionalized mesoporous silica based polyethersulfone-polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells
      Zhang, Jin; Lu, S.; Zhu, H.; Chen, Kongfa; Xiang, Y.; Liu, Jian; Forsyth, M.; Jiang, San Ping (2016)
      It is important to find alternative membranes to the state-of-the-art polybenzimidazole based high temperature proton exchange membranes with high proton conductivity at elevated temperature but with simple synthesis ...
    • Anhydrous phosphoric acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells
      Zeng, J.; He, B.; Lamb, K.; De Marco, Roland; Shen, P.; Jiang, San Ping (2013)
      A novel inorganic proton exchange membrane based on phosphoric acid (PA)-functionalized sintered mesoporous silica, PA-meso-silica, has been developed and investigated. After sintering at 650 °C, the meso-silica powder ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.