Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks

    Access Status
    Fulltext not available
    Authors
    Li, J.
    Gu, C.
    Wu, Z.
    Wu, Changzhi
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, J. and Gu, C. and Wu, Z. and Wu, C. 2017. Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks. Complexity. 2017.
    Source Title
    Complexity
    DOI
    10.1155/2017/3610283
    ISSN
    1076-2787
    School
    School of Design and the Built Environment
    URI
    http://hdl.handle.net/20.500.11937/66310
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Jueyou Li et al. Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.

    Related items

    Showing items related by title, author, creator and subject.

    • Global optimization for nonconvex optimization problems
      Ruan, Ning (2012)
      Duality is one of the most successful ideas in modern science [46] [91]. It is essential in natural phenomena, particularly, in physics and mathematics [39] [94] [96]. In this thesis, we consider the canonical duality ...
    • Modelling the structure of Australian Wool Auction prices
      Chow, Chi Ngok (2010)
      The largest wool exporter in the world is Australia, where wool being a major export is worth over AUD $2 billion per year and constitutes about 17 per cent of all agricultural exports. Most Australian wool is sold by ...
    • Heuristic algorithms for routing problems.
      Chong, Yen N. (2001)
      General routing problems deal with transporting some commodities and/or travelling along the axes of a given network in some optimal manner. In the modern world such problems arise in several contexts such as distribution ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.