High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
©2018. American Geophysical Union. We introduce a new method to determine the anisotropy of reflectance of sea ice and snow at spatial scales from 1 m 2 to 80 m 2 using a multispectral circular fish-eye radiance camera (CE600). The CE600 allows measuring radiance simultaneously in all directions of a hemisphere at a 1° angular resolution. The spectral characteristics of the reflectance and its dependency on illumination conditions obtained from the camera are compared to those obtained with a hyperspectral field spectroradiometer manufactured by Analytical Spectral Device, Inc. (ASD). Results confirm the potential of the CE600, with the suggested measurement setup and data processing, to measure commensurable sea ice and snow hemispherical-directional reflectance factor, HDRF, values. Compared to the ASD, the reflectance anisotropy measured with the CE600 provides much higher resolution in terms of directional reflectance (N = 16,020). The hyperangular resolution allows detecting features that were overlooked using the ASD due to its limited number of measurement angles (N = 25). This data set of HDRF further documents variations in the anisotropy of the reflectance of snow and ice with the geometry of observation and illumination conditions and its spectral and spatial scale dependency. Finally, in order to reproduce the hyperangular CE600 reflectance measurements over the entire 400-900 nm spectral range, a regression-based method is proposed to combine the ASD and CE600 measurements. Results confirm that both instruments may be used in synergy to construct a hyperangular and hyperspectral snow and ice reflectance anisotropy data set.
Related items
Showing items related by title, author, creator and subject.
-
Dubiusson, P.; Frouin, R.; Dessailly, D.; Duforet, L.; Leon, J.; Voss, K.; Antoine, David (2009)A methodology is proposed to infer the altitude of aerosol plumes over the ocean from reflectance ratio measurements in the O2 absorption A-band (759 to 770 nm). The reflectance ratio is defined as the ratio of the ...
-
Dubuisson, P.; Frouin, R.; Duforêt, L.; Dessailly, D.; Voss, K.; Antoine, David (2006)A methodology is presented to estimate aerosol altitude from reflectance ratio measurements in the O2 absorption Aband. Previous studies have shown the impact of the vertical distribution of scatterers on the reflectance ...
-
Eiserbeck, Christiane (2011)The exploration and production of petroleum from the subsurface is an important sector of industry to maintain the standards of our modern life. The availability of these natural resources has diminished in the past decades ...