Show simple item record

dc.contributor.authorWang, Y.
dc.contributor.authorCao, H.
dc.contributor.authorChen, L.
dc.contributor.authorChen, C.
dc.contributor.authorDuan, Xiaoguang
dc.contributor.authorXie, Y.
dc.contributor.authorSong, W.
dc.contributor.authorSun, Hongqi
dc.contributor.authorWang, Shaobin
dc.date.accessioned2018-04-30T02:40:50Z
dc.date.available2018-04-30T02:40:50Z
dc.date.created2018-04-16T07:41:37Z
dc.date.issued2018
dc.identifier.citationWang, Y. and Cao, H. and Chen, L. and Chen, C. and Duan, X. and Xie, Y. and Song, W. et al. 2018. Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. Applied Catalysis B: Environmental. 229: pp. 71-80.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/66459
dc.identifier.doi10.1016/j.apcatb.2018.02.010
dc.description.abstract

© 2018 Elsevier B.V. Anode graphite was recovered from a spent lithium ion battery (LIB) and reutilized as a carbon precursor to obtain graphene-based materials. Characterization results revealed that impurities were removed from the obtained graphite powder by cleansing processes. The as-synthesized reduced graphene oxide (rGO) from the purified graphite (LIB-rGO) demonstrated excellent catalytic ozonation activity against organic pollutants removal. To probe potential catalytic active sites, LIB-rGOs with different defective levels but similar oxygen contents were synthesized. Catalytic ozonation tests revealed that a higher defective level resulted in a greater catalytic activity. Density functional theory (DFT) calculation further demonstrated that ozone molecules could spontaneously decompose into active oxygen species on graphene structural vacancies and edges, which consolidated the role of defective structure in catalytic ozonation activity. Meanwhile, we discovered the pollutant-structure-dependent behavior of dominant reactive oxygen species (ROS) with the aid of radical scavenging tests and electron paramagnetic resonance (EPR) spectra. For phenolic pollutants vulnerable to direct ozone attacking, superoxide radicals (O 2 [rad] - ) and singlet oxygen ( 1 O 2 ) were found to be responsible ROS, whereas hydroxyl radicals ([rad]OH) were identified as the principle ROS for aliphatic organic pollutants destruction. This study not only put forward a possible way for reutilization of waste LIB anode, but also stepped further for investigating the catalytic ozonation mechanism towards the graphene-based materials including the active sites and the generation of ROS.

dc.publisherElsevier BV
dc.titleTailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination
dc.typeJournal Article
dcterms.source.volume229
dcterms.source.startPage71
dcterms.source.endPage80
dcterms.source.issn0926-3373
dcterms.source.titleApplied Catalysis B: Environmental
curtin.departmentWASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record