Show simple item record

dc.contributor.authorRistic, B.
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorFarina, A.
dc.identifier.citationRistic, Branko and Vo, Ba-Tuong and Vo, Ba-Ngu and Farina, Alfonso. 2013. A Tutorial on Bernoulli Filters: Theory, Implementation and Applications. IEEE Transactions on Signal Processing. 61 (13): pp. 3406-3430.

Bernoulli filters are a class of exact Bayesian filters for non-linear/non-Gaussian recursive estimation of dynamic systems, recently emerged from the random set theoretical framework. The common feature of Bernoulli filters is that they are designed for stochastic dynamic systems which randomly switch on and off. The applications are primarily in target tracking, where the switching process models target appearance or disappearance from the surveillance volume. The concept, however, is applicable to a range of dynamic phenomena, such as epidemics, pollution, social trends, etc. Bernoulli filters in general have no analytic solution and are implemented as particle filters or Gaussian sum filters. This tutorial paper reviews the theory of Bernoulli filters as well as their implementation for different measurement models. The theory is backed up by applications in sensor networks, bearings-only tracking, passive radar/sonar surveillance, visual tracking, monitoring/prediction of an epidemic and tracking using natural language statements. More advanced topics of smoothing, multi-target detection/tracking, parameter estimation and sensor control are briefly reviewed with pointers for further reading.

dc.publisherInstitute of Electrical and Electronics Engineers
dc.titleA Tutorial on Bernoulli Filters: Theory, Implementation and Applications
dc.typeJournal Article
dcterms.source.titleIEEE Transactions on Signal Processing
curtin.accessStatusFulltext not available

Files in this item


This item appears in the following Collection(s)

Show simple item record