"Why did you do that?" Explainable intelligent robots
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. As autonomous intelligent systems become more widespread, society is beginning to ask: "What are the machines up to?". Various forms of artificial intelligence control our latest cars, load balance components of our power grids, dictate much of the movement in our stock markets and help doctors diagnose and treat our ailments. As they become increasingly able to learn and model more complex phenomena, so the ability of human users to understand the reasoning behind their decisions often decreases. It becomes very difficult to ensure that the robot will perform properly and that it is possible to correct errors. In this paper, we outline a variety of techniques for generating the underlying knowledge required for explainable artificial intelligence, ranging from early work in expert systems through to systems based on Behavioural Cloning. These are techniques that may be used to build intelligent robots that explain their decisions and justify their actions. We will then illustrate how decision trees are particularly well suited to generating these kinds of explanations. We will also discuss how additional explanations can be obtained, beyond simply the structure of the tree, based on knowledge of how the training data was generated. Finally, we will illustrate these capabilities in the context of a robot learning to drive over rough terrain in both simulation and in reality.
Related items
Showing items related by title, author, creator and subject.
-
Weber, Keven (1998)Giving robots the ability to move around autonomously in various real-world environments has long been a major challenge for Artificial Intelligence. New approaches to the design and control of autonomous robots have shown ...
-
Gopal, Lenin; Loong, A. (2011)The demand for mobile reconnaissance robots has increased since the beginning of the 21st century war. The army mainly uses these robots for reconnaissance and gathering intelligence data without putting the personnel ...
-
Wurdemann, H.; Georgiou, E.; Cui, Lei; Dai, J. (2011)This paper investigates simultaneous localization and mapping (SLAM) problem by exploiting the Microsoft Kinect™ sensor array and an autonomous mobile robot capable of self-localization. The combination of them covers the ...