Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Nanopore structures of isolated kerogen and bulk shale in Bakken Formation

    Access Status
    Fulltext not available
    Embargo Lift Date
    2020-04-28
    Authors
    Liu, K.
    Ostadhassan, M.
    Zou, J.
    Gentzis, T.
    Rezaee, M. Reza
    Bubach, B.
    Carvajal-Ortiz, H.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liu, K. and Ostadhassan, M. and Zou, J. and Gentzis, T. and Rezaee, M.R. and Bubach, B. and Carvajal-Ortiz, H. 2018. Nanopore structures of isolated kerogen and bulk shale in Bakken Formation. Fuel. 226: pp. 441-453.
    Source Title
    Fuel
    DOI
    10.1016/j.fuel.2018.04.034
    ISSN
    0016-2361
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/67020
    Collection
    • Curtin Research Publications
    Abstract

    Pores that exist within the organic matter can affect the total pore system of bulk shale samples and, as a result, need to be studied and analyzed carefully. In this study, samples from the Bakken Formation, in conjunction with the kerogen that was isolated from them, were studied and compared through a set of analytical techniques: X-ray diffraction (XRD), Rock-Eval pyrolysis, Fourier Transform infrared spectroscopy (FTIR), and gas adsorption (CO 2 and N 2 ). The results can be summarized as follows: 1) quartz and clays are two major minerals in the Bakken samples; 2) the samples have rich organic matter content with TOC greater than 10 wt%; 3) kerogen is marine type II; 4) gas adsorption showed that isolated kerogen compared to the bulk sample has larger micropore volume and surface area, meso- and macropore volume, and Brunauer–Emmett–Teller (BET) surface area; 5) deconvolution of pore size distribution (PSD) curves demonstrated that pores in the isolated kerogen could be separated into five distinct clusters, whereas bulk shale samples exhibited one additional pore cluster with an average pore size of 4 nm hosted in the minerals. The comparison of PSD curves obtained from isolated kerogen and bulk shale samples proved that most of the micropores in the shale are hosted within the organic matter while the mesopores with a size ranging between 2 and 10 nm are mainly hosted by minerals. The overall results demonstrated that organic matter-hosted pores make a significant contribution to the total porosity of the Bakken shale samples.

    Related items

    Showing items related by title, author, creator and subject.

    • Nanopore structure comparison between shale oil and shale gas: examples from the Bakken and Longmaxi Formations
      Liu, K.; Wang, L.; Ostadhassan, M.; Zou, J.; Bubach, B.; Rezaee, M. Reza (2019)
      © 2018, The Author(s). In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using ...
    • Nanoscale pore structure characterization of the Bakken shale in the USA
      Liu, K.; Ostadhassan, M.; Zhou, J.; Gentzis, T.; Rezaee, Reza (2017)
      Understanding the pore structures of unconventional reservoirs such as shale can assist in estimating their elastic transport and storage properties, thus enhancing the hydrocarbon recovery from such massive resources. ...
    • Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale
      Liu, K.; Ostadhassan, M.; Zou, Jie; Gentzis, T.; Rezaee, M. Reza; Bubach, B.; Carvajal-Ortiz, H. (2018)
      Understanding pore heterogeneity can enable us to obtain a deeper insight into the flow and transport processes in any porous medium. In this study, multifractal analysis was employed to analyze gas adsorption isotherms ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin University would like to pay our respect to the indigenous members of our community by acknowledging the traditional owners of the land on which the Perth Campus is located, the Wadjuk people of the Nyungar Nation; and on our Kalgoorlie Campus, the Wongutha people of the North-Eastern Goldfields.
    Watch our traditional Aboriginal welcome