Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction

    Access Status
    Fulltext not available
    Authors
    Yao, Y.
    Hu, Y.
    Yu, M.
    Lian, C.
    Gao, M.
    Zhang, J.
    Li, G.
    Wang, Shaobin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yao, Y. and Hu, Y. and Yu, M. and Lian, C. and Gao, M. and Zhang, J. and Li, G. et al. 2018. Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction. Chemical Engineering Journal. 344: pp. 535-544.
    Source Title
    Chemical Engineering Journal
    DOI
    10.1016/j.cej.2018.03.089
    ISSN
    1385-8947
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150103026
    URI
    http://hdl.handle.net/20.500.11937/67257
    Collection
    • Curtin Research Publications
    Abstract

    Molybdenum carbide and Ni 0 nanoparticles (NPs) embedding into N-doped carbon materials (Mo x Ni y @N-C) were prepared by one-step thermolysis of Ni, Mo, N, C precursors, and then loaded on poly (vinylidene fluoride) (PVDF) film to obtain the catalytic membranes (Mo x Ni y @N-C/PVDF). The membranes effectively catalyzed the reduction of toxic Cr VI to benign Cr III by employing formic acid (FA) as the reducing agent. The effects of parameters, such as initial concentrations of Cr VI (5–25 mg/L) and FA (0.117–0.702 M), solution pHs (2.12–5.43) and temperatures (15–55 °C), as well as HCOONa concentrations (0–0.20 M) on Cr VI reduction were analyzed in view of scalable industrial applications. Owing to the synergistic effects amongst Ni 0 , Mo x C, doped nitrogen, and oxygen groups as catalytic active sites, and carbon shell protection of metal NPs from leaching out, Mo x Ni y @N-C/PVDF catalysts exhibited excellent catalytic activity and recyclable capability for Cr VI reduction. The membrane's unique porous structure and large chemically active surface area not only minimize the NPs agglomeration, but also allow the facile transport of catalytic reactants to the active surface without suffering from high mass-transfer resistance. This study demonstrates Mo x Ni y @N-C/PVDF catalytic membranes with the morphological and structural features provide a green, economic, and fast method for the treatment of Cr VI containing waters.

    Related items

    Showing items related by title, author, creator and subject.

    • Heteroatoms doped metal iron–polyvinylidene fluoride (PVDF) membrane for enhancing oxidation of organic contaminants
      Yao, Y.; Lian, C.; Hu, Y.; Zhang, J.; Gao, M.; Zhang, Y.; Wang, Shaobin (2017)
      © 2017 Elsevier B.V. Iron nanoparticles (NPs) embedded in S, N-codoped carbon were prepared by one-step pyrolysis of a homogeneous mixture consisting of Fe, S, N, C precursors, and then immobilized in poly (vinylidene ...
    • A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination
      Guo, Y.; Song, Z.; Xu, B.; Li, Y.; Qi, F.; Croue, Jean-Philippe; Yuan, D. (2018)
      A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn2O4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of ...
    • In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling
      Li, Xin Yong; Pang, R.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. (2013)
      Membrane fouling remains one of the most problematic issues surrounding membrane use in water and wastewater treatment. Organic fouling and biological fouling contribute to irreversible fouling and flux decline in these ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.