Dynamic diffraction studies on the crystallization, phase transformation, and activation energies in anodized titania nanotubes
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 â—¦ C. Anatase first crystallized at 400 â—¦ C, while rutile crystallized at 550 â—¦ C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 â—¦ C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.
Related items
Showing items related by title, author, creator and subject.
-
Albetran, H.; O'Connor, Brian; Low, It Meng (2017)The phase transformation behavior of TiO 2 sol-gel synthesized nanopowder heated in a sealed quartz capillary from room temperature to 800°C was studied using in-situ synchrotron radiation diffraction (SRD). Sealing of ...
-
Albetran, H.; Low, It Meng (2016)Copyright © Materials Research Society 2016.Titania nanotube arrays were synthesized electrochemically by anodization of titanium foils, and the synthesized titania nanotubes were then implanted with indium ions. The ...
-
Albetran, H.; O Connor, B.; Low, It Meng (2016)This paper reports on titania absolute phase level (amorphous, anatase, and rutile forms) changes in electrospun amorphous titania nanofibers from 25 to 900 °C in air and argon atmospheres. A novel method was developed ...