Systematic Study of Oxygen Evolution Activity and Stability on La1–xSrxFeO3−δ Perovskite Electrocatalysts in Alkaline Media
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Perovskite oxide is an attractive low-cost alternative catalyst for oxygen evolution reaction (OER) relative to the precious metal oxide-based electrocatalysts (IrO 2 and RuO 2 ). In this work, a series of Sr-doped La-based perovskite oxide catalysts with compositions of La 1-x Sr x FeO 3-δ (x = 0, 0.2, 0.5, 0.8, and 1) are synthesized and characterized. The OER-specific activities in alkaline solution increase in the order of LaFeO 3-δ (LF), La 0.8 Sr 0.2 FeO 3-δ (LSF-0.2), La 0.5 Sr 0.5 FeO 3-δ (LSF-0.5), SrFeO 3-δ (SF), and La 0.2 Sr 0.8 FeO 3-δ (LSF-0.8). We establish a direct correlation between the enhancement in the specific activity and the amount of surface oxygen vacancies as well as the surface Fe oxidation states. The improved specific activity for LSF-0.8 is clearly linked to the optimum amount of surface oxygen vacancies and surface Fe oxidation states. We also find that the OER performance stability is a function of the crystal structure and the deviation in the surface La and/or Sr composition(s) from their bulk stoichiometric compositions. The cubic structure and lower deviation, as is the case for LSF-0.8, led to a higher OER performance stability. These surface performance relations provide a promising guideline for constructing efficient water oxidation.
Related items
Showing items related by title, author, creator and subject.
-
Fansuri, Hamzah (2005)Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
-
Wang, X.; Li, Xinyong ; Mu, J.; Fan, S.; Chen, X.; Wang, L.; Yin, Z.; Tade, Moses ; Liu, Shaomin (2019)Copyright © 2019 American Chemical Society. Oxygen vacancy-rich porous Co3O4 nanosheets (OV-Co3O4) with diverse surface oxygen vacancy contents were synthesized via facile surface reduction and applied to NO reduction ...
-
Li, J.; McFarlane, A.; Klauber, Craig; Smith, P. (2017)© Commonwealth Scientific and Industrial Research Organisation (CSIRO) 2017. Fundamental Dissolution Mechanisms of Clays The mechanisms of dissolution and precipitation at the mineral–water interface have been reasonably ...