Direct Operation of Solid Oxide Fuel Cells on Low-Concentration Oxygen-Bearing Coal-Bed Methane with High Stability
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
This paper studies the electrochemical feasibility of the direct conversion of low-concentration, oxygen-bearing coal-bed methane (CBM, 30 vol % CH4) to electricity via solid oxide fuel cells (SOFCs). A fuel cell with the LiLaNi–Al2O3/Cu catalyst layer was developed, and a maximum power output of ∼1068 mW cm–2 was achieved at 850 °C using 30 vol % CBM fuel, which is only modestly lower than that from a cell based on hydrogen fuel. The stability test showed that the cell operation was quite stable during the 120-h test period, which is ∼40-fold longer than that of the cell without catalyst layer. The partial oxidation of methane (POM) occurring in the anode may play an important role when using 30 vol % CBM fuel, which not only supplies highly active gaseous fuels (H2 and CO) but also suppresses the carbon deposition on the anode. By modifying the anode with a LiLaNi–Al2O3/Cu catalyst layer, the POM of 30 vol % CBM was further promoted and the carbon deposition over the anode was mitigated more efficiently. Therefore, the strategy of direct conversion of low-concentration, oxygen-bearing CBM via the SOFCs with an anode catalyst layer may pave an alternative way to utilize this abundant resource efficiently and cleanly.
Related items
Showing items related by title, author, creator and subject.
-
Chang, H.; Chen, H.; Shao, Zongping; Shi, J.; Bai, J.; Li, S. (2016)© 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni ...
-
Wang, W.; Ran, R.; Shao, Zongping (2011)Ni-Al2O3 catalyst is modified with Li 2O3, La2O3 and CaO promoters to improve its resistance to coking. These catalysts are used as the materials of the anode catalyst layer in solid-oxide fuel cells operating on methane. ...
-
Wang, W.; Su, C.; Wu, Y.; Ran, R.; Shao, Zongping (2010)An inexpensive 7 wt.% Ni-Al2O3 composite is synthesized by a glycine-nitrate process and systematically investigated as anode catalyst layer of solid-oxide fuel cells operating on methane fuel by examining its catalytic ...