Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A Detailed Spatiotemporal Wavelet Study to Improve the P‐Phase Picking Performance for the 2007–2010 Shallow Earthquake Swarms near Matata, New Zealand

    Access Status
    Fulltext not available
    Authors
    Jafarzadeh Rastin, Sepideh
    Gledhill, K.
    Unsworth, C.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jafarzadeh Rastin, S. and Gledhill, K. and Unsworth, C. 2018. A Detailed Spatiotemporal Wavelet Study to Improve the P‐Phase Picking Performance for the 2007–2010 Shallow Earthquake Swarms near Matata, New Zealand. Bulletin of the Seismological Society of America. 108 (1): pp. 260-277.
    Source Title
    Bulletin of the Seismological Society of America
    DOI
    10.1785/0120150228
    ISSN
    0037-1106
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/68189
    Collection
    • Curtin Research Publications
    Abstract

    We report a 45% overall improvement by incorporating wavelet scale thresholding (WST) into the GeoNet P-phase picker. We study the spatiotemporal effect of the WST on performance of the automatic phase picking using 6471 waveforms with manual picks recorded by seven stations for 3312 Matata events over the 4-year period of 2007–2010. We identify whether the Haar wavelet or Mexican hat wavelet performs the best for each station by comparing seven quality control parameters, including total and net improvements. We show that the Mexican hat wavelet outperformed the Haar wavelet for recordings of Stations EDRZ, LIRZ, KARZ, URZ, and TGRZ, whereas the Haar wavelet was preferred for Stations OPRZ and MARZ. Having applied the Mexican hat WST, we obtained the largest average total improvement (64.8%) and onset retrieval (32%) for the EDRZ station and the largest average onset revision (37.8%) and picking quality enhancement (29%) for the KARZ station in 2007–2010. Having the highest rate of manually picked onsets at the EDRZ station confirms the merit of the results and the superiority of the WST over the current Butterworth filtering. We experienced the smallest rates of onset retrieval (average of 2.8%) and its associated temporal variation at the URZ station, which is likely due to the high-quality data recorded by the only deep-borehole-installed sensor at this station. Applying the Haar WST to the MARZ recordings retrieved missed onsets with a total average rate of 22.9%, which is significant because the MARZ station contributed waveforms for 93.3% of the chosen events. Overall, the improved time–frequency localization of the WST resulted in improving 2914 out of 6471 onsets (including 1323 retrieved and 1591 revised) by enhancing either initial detection capability or noise– signal modeling quality (or both) at each station.

    Related items

    Showing items related by title, author, creator and subject.

    • Applying Haar and Mexican hat wavelets to significantly improve the performance of the New Zealand GeoNet P-phase picker for the 2008 Matata region swarm
      Jafarzadeh Rastin, Sepideh; Unsworth, C.; Gledhill, K. (2014)
      The New Zealand GeoNet P-phase picker's performance can be significantly improved, by up to 70%, when Mexican hat and Haar wavelet scale thresholding (WST) is implemented in the preprocessing stage of manually picked ...
    • Reducing the dimensionality of hyperspectral remotely sensed data with applications for maximum likelihood image classification
      Santich, Norman Ty (2007)
      As well as the many benefits associated with the evolution of multispectral sensors into hyperspectral sensors there is also a considerable increase in storage space and the computational load to process the data. ...
    • Improving fuzzy-based model for seasonal river flow forecasting
      Sarukkalige, Priyantha Ranjan; Badrzadeh, Honey (2014)
      Accurate river flow forecasts play a key role in sustainable water resources and environmental management. Recently, computational intelligence approaches have become increasingly popular due to minimum information ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.