Show simple item record

dc.contributor.authorWang, Kan
dc.contributor.authorKhodabandeh, Amir
dc.contributor.authorTeunissen, Peter
dc.date.accessioned2018-06-29T12:25:57Z
dc.date.available2018-06-29T12:25:57Z
dc.date.created2018-06-29T12:08:56Z
dc.date.issued2018
dc.identifier.citationWang, K. and Khodabandeh, A. and Teunissen, P. 2018. Five-frequency Galileo long-baseline ambiguity resolution with multipath mitigation. GPS Solutions. 22: 75.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/68518
dc.identifier.doi10.1007/s10291-018-0738-6
dc.description.abstract

© 2018, The Author(s). For long-baseline over several hundreds of kilometers, the ionospheric delays that cannot be fully removed by differencing observations between receivers hampers rapid ambiguity resolution. Compared with forming ionospheric-free linear combination using dual- or triple-frequency observations, estimating ionospheric delays using uncombined observations keeps all the information of the observations and allows extension of the strategy to any number of frequencies. As the number of frequencies has increased for the various GNSSs, it is possible to study long-baseline ambiguity resolution performance using up to five frequencies with uncombined observations. We make use of real Galileo observations on five frequencies with a sampling interval of 1 s. Two long baselines continuously receiving signals from six Galileo satellites during corresponding test time intervals were processed to study the formal and empirical ambiguity success rates in case of full ambiguity resolution (FAR). The multipath effects are mitigated using the measuremen ts of another day when the constellation repeats. Compared to the results using multipath-uncorrected Galileo observations, it is found that the multipath mitigation plays an important role in improving the empirical ambiguity success rates. A high number of frequencies are also found to be helpful to achieve high ambiguity success rate within a short time. Using multipath-uncorrected observations on two, three, four and five frequencies, the mean empirical success rates are found to be about 73, 88, 91, and 95% at 10 s, respectively, while the values are increased to higher than 86, 95, 98, and 99% after mitigating the multipath effects.

dc.publisherSpringer
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleFive-frequency Galileo long-baseline ambiguity resolution with multipath mitigation
dc.typeJournal Article
dcterms.source.volume22
dcterms.source.number3
dcterms.source.issn1080-5370
dcterms.source.titleGPS Solutions
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/