Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Climate clever clovers: New paradigm to reduce the environmental footprint of ruminants by breeding low methanogenic forages utilizing haplotype variation

    267053.pdf (2.634Mb)
    Access Status
    Open access
    Authors
    Kaur, P.
    Appels, R.
    Bayer, P.
    Keeble-Gagnere, G.
    Wang, J.
    Hirakawa, H.
    Shirasawa, K.
    Vercoe, P.
    Stefanova, Katia
    Durmic, Z.
    Nichols, P.
    Revell, C.
    Isobe, S.
    Edwards, D.
    Erskine, W.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kaur, P. and Appels, R. and Bayer, P. and Keeble-Gagnere, G. and Wang, J. and Hirakawa, H. and Shirasawa, K. et al. 2017. Climate clever clovers: New paradigm to reduce the environmental footprint of ruminants by breeding low methanogenic forages utilizing haplotype variation. Frontiers in Plant Science. 8: 1463.
    Source Title
    Frontiers in Plant Science
    DOI
    10.3389/fpls.2017.01463
    ISSN
    1664-462X
    School
    Centre for Crop and Disease Management (CCDM)
    URI
    http://hdl.handle.net/20.500.11937/68692
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Kaur, Appels, Bayer, Keeble-Gagnere, Wang, Hirakawa, Shirasawa, Vercoe, Stefanova, Durmic, Nichols, Revell, Isobe, Edwards and Erskine. Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2D 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production.

    Related items

    Showing items related by title, author, creator and subject.

    • Global warming contributions from wheat, sheep meat and wool production in Victoria, Australia - a life cycle assessment
      Biswas, Wahidul; Graham, J.; Kelly, K.; John, Michele (2010)
      This paper compares the life cycle global warming potential of three of Australia’s important agricultural production activities – the production of wheat, meat and wool in grazed subterranean clover (sub-clover) dominant ...
    • Adaptation of Indian mustard (Brassica juncea L.) to short season dryland Mediterranean-type environments.
      Gunasekera, Chandra Padmini (2003)
      Indian mustard (Brassica juncea L.) has recently been identified as a potential and profitable alternative oilseed crop in the grain growing regions of Australia. To date, no research has been reported on adaptation of ...
    • The influence of cultivar, environment and nutrition management onwheat quality in the high rainfall zone of south west, Western Australia
      Hughes, Darren Michael (2010)
      The high rainfall zone (HRZ) of south west Western Australian (WA) has traditionally been dominated by livestock industries. However, a reduction in wool price throughout the 1990’s has stimulated a transition to farm ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.