Inequalities for the fundamental Robin eigenvalue for the Laplacian on N-dimensional rectangular parallelepipeds
dc.contributor.author | Keady, G. | |
dc.contributor.author | Wiwatanapataphee, Benchawan | |
dc.date.accessioned | 2018-06-29T12:27:32Z | |
dc.date.available | 2018-06-29T12:27:32Z | |
dc.date.created | 2018-06-29T12:09:06Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Keady, G. and Wiwatanapataphee, B. 2018. Inequalities for the fundamental Robin eigenvalue for the Laplacian on N-dimensional rectangular parallelepipeds. Mathematical Inequalities and Applications. 21 (4): pp. 911-930. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/68872 | |
dc.identifier.doi | 10.7153/mia-2018-21-62 | |
dc.description.abstract |
Amongst N-dimensional rectangular parallelepipeds (boxes) of a given volume, that which has the smallest fundamental Robin eigenvalue for the Laplacian is the N -cube. We give an elementary proof of this isoperimetric inequality based on the well-known formulae for the eigenvalues. Also treated are variously related inequalities which are amenable to investigation using the formulae for the eigenvalues. | |
dc.publisher | Element d.o.o. | |
dc.relation.uri | http://files.ele-math.com/preprints/mia-21-62.pdf | |
dc.title | Inequalities for the fundamental Robin eigenvalue for the Laplacian on N-dimensional rectangular parallelepipeds | |
dc.type | Journal Article | |
dcterms.source.volume | 21 | |
dcterms.source.number | 4 | |
dcterms.source.startPage | 911 | |
dcterms.source.endPage | 930 | |
dcterms.source.issn | 1331-4343 | |
dcterms.source.title | Mathematical Inequalities and Applications | |
curtin.note |
Copyright 2018 Ele-Math. Reproduced with permission. | |
curtin.department | School of Electrical Engineering, Computing and Mathematical Science (EECMS) | |
curtin.accessStatus | Open access |