Show simple item record

dc.contributor.authorKeady, G.
dc.contributor.authorWiwatanapataphee, Benchawan
dc.date.accessioned2018-06-29T12:27:32Z
dc.date.available2018-06-29T12:27:32Z
dc.date.created2018-06-29T12:09:06Z
dc.date.issued2018
dc.identifier.citationKeady, G. and Wiwatanapataphee, B. 2018. Inequalities for the fundamental Robin eigenvalue for the Laplacian on N-dimensional rectangular parallelepipeds. Mathematical Inequalities and Applications. 21 (4): pp. 911-930.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/68872
dc.identifier.doi10.7153/mia-2018-21-62
dc.description.abstract

Amongst N-dimensional rectangular parallelepipeds (boxes) of a given volume, that which has the smallest fundamental Robin eigenvalue for the Laplacian is the N -cube. We give an elementary proof of this isoperimetric inequality based on the well-known formulae for the eigenvalues. Also treated are variously related inequalities which are amenable to investigation using the formulae for the eigenvalues.

dc.publisherElement d.o.o.
dc.relation.urihttp://files.ele-math.com/preprints/mia-21-62.pdf
dc.titleInequalities for the fundamental Robin eigenvalue for the Laplacian on N-dimensional rectangular parallelepipeds
dc.typeJournal Article
dcterms.source.volume21
dcterms.source.number4
dcterms.source.startPage911
dcterms.source.endPage930
dcterms.source.issn1331-4343
dcterms.source.titleMathematical Inequalities and Applications
curtin.note

Copyright 2018 Ele-Math. Reproduced with permission.

curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Science (EECMS)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record