Show simple item record

dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorDam, N.
dc.contributor.authorPhung, D.
dc.contributor.authorTran, Q.
dc.contributor.authorVo, B.
dc.date.accessioned2018-08-08T04:41:12Z
dc.date.available2018-08-08T04:41:12Z
dc.date.created2018-08-08T03:50:59Z
dc.date.issued2018
dc.identifier.citationVo, B. and Dam, N. and Phung, D. and Tran, Q. and Vo, B. 2018. Model-based learning for point pattern data. Pattern Recognition. 84: pp. 136-151.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/69503
dc.identifier.doi10.1016/j.patcog.2018.07.008
dc.description.abstract

This article proposes a framework for model-based point pattern learning using point process theory. Likelihood functions for point pattern data derived from point process theory enable principled yet conceptually transparent extensions of learning tasks, such as classification, novelty detection and clustering, to point pattern data. Furthermore, tractable point pattern models as well as solutions for learning and decision making from point pattern data are developed.

dc.publisherElsevier
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160104662
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleModel-based learning for point pattern data
dc.typeJournal Article
dcterms.source.volume84
dcterms.source.startPage136
dcterms.source.endPage151
dcterms.source.issn0031-3203
dcterms.source.titlePattern Recognition
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Science (EECMS)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/