Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica

    267728.pdf (1.688Mb)
    Access Status
    Open access
    Authors
    Crossley, R.
    Evans, Katy
    Jeon, H.
    Kilburn, M.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Crossley, R. and Evans, K. and Jeon, H. and Kilburn, M. 2018. Insights into sulfur cycling at subduction zones from in-situ isotopic analysis of sulfides in high-pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology. 493: pp. 359-378.
    Source Title
    Chemical Geology
    DOI
    10.1016/j.chemgeo.2018.06.014
    ISSN
    0009-2541
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/69555
    Collection
    • Curtin Research Publications
    Abstract

    Devolatilisation of serpentinites at depth in subduction zones contributes significant quantities of sulfur and other redox sensitive elements to the sub-arc mantle. However, the fate of sulfur in subducted serpentinites is poorly constrained. Textures of sulfur-bearing phases in subducted serpentinites are rarely studied, yet provide important information on the changes to sulfur distribution throughout the subduction cycle and as a result of fluid infiltration. d34S values of sulfides provide constraints on sulfur sources, the redox state of sulfur in the host mineral, and on processes that have occurred subsequent to sulfide crystallisation, including interaction with oxidised or reduced fluids. Therefore, it is possible to use d34S values in subducted serpentinites to constrain the redox state of sulfur in sulfides and subduction zone fluids. Furthermore, the proximity of serpentinites to ocean crust and metasediments may influence enrichment or depletion of34S during subduction relative to serpentinites distal to such lithologies. This study investigates the redox state, the likelihood of sulfur addition to the sub-arc mantle from serpentinite dehydration, and the distribution of sulfur within subducted serpentinites and ‘hybrid’ mafic/ultramafic rocks from Alpine Corsica. The techniques utilised include petrographic analysis, in-situ sulfur isotopic analysis and trace element analysis of sulfides hosted in these rocks. All sulfides investigated have high d34S values of 1.9–15.5‰ which suggests that mantle-derived sulfur (d34S ~0.1‰), was not the sole source of sulfur. The highest d34S values are recorded in pyrites of a hybrid mafic/ultramafic sample. High d34S values are preserved in sulfides attributed to prograde metamorphism, and is most consistent with the retention of sulfur derived from hydrothermal sulfate reduction on the seafloor. However, a shift towards higher d34S values in sulfides associated with the advanced stages of exhumation suggests that late stage exhumation enables enhanced access to slab-derived fluids bearing oxidised sulfur (SO42-or SO2). Such fluids may have been derived from the devolatilisation of serpentinite at greater depth, or from other lithologies.

    Related items

    Showing items related by title, author, creator and subject.

    • Separate zones of sulfate and sulfide release from subducted mafic oceanic crust
      Tomkins, A.; Evans, Katy (2015)
      Liberation of fluids during subduction of oceanic crust is thought to transfer sulfur into the overlying sub-arc mantle. However, despite the importance of sulfur cycling through magmatic arcs to climate change, magma ...
    • Insights into subduction zone sulfur recycling from isotopic analysis of eclogite-hosted sulfides
      Evans, Katy; Tomkins, A.; Cliff, J.; Fiorentini, M. (2014)
      Subduction of sulfur in ocean crust makes a significant but poorly understood contribution to the global sulfur cycle. Part of the uncertainty arises from a lack of knowledge about the metamorphic changes that affect ...
    • Ore-forming processes of the daqiao epizonal orogenic gold deposit, west qinling orogen, China: Constraints from textures, trace elements, and sulfur isotopes of pyrite and marcasite, and raman spectroscopy of carbonaceous material
      Wu, Y.; Li, J.; Evans, Katy; Koenig, A.; Li, Z.; O Brien, H.; Lahaye, Y.; Rempel, Kirsten; Hu, S.; Zhang, Z.; Yu, J. (2018)
      The Daqiao gold deposit is hosted in organic-rich Triassic pumpellyite-actinolite facies metamorphosed turbidites in the West Qinling orogen, central China. Gold mineralization is characterized by high-grade hydraulic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.