Learning non-linear reconstruction models for image set classification
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2014 IEEE. We propose a deep learning framework for image set classification with application to face recognition. An Adaptive Deep Network Template (ADNT) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The pre-initialized ADNT is then separately trained for images of each class and class-specific models are learnt. Based on the minimum reconstruction error from the learnt class-specific models, a majority voting strategy is used for classification. The proposed framework is extensively evaluated for the task of image set classification based face recognition on Honda/UCSD, CMU Mobo, YouTube Celebrities and a Kinect dataset. Our experimental results and comparisons with existing state-of-the-art methods show that the proposed method consistently achieves the best performance on all these datasets.
Related items
Showing items related by title, author, creator and subject.
-
Santich, Norman Ty (2007)As well as the many benefits associated with the evolution of multispectral sensors into hyperspectral sensors there is also a considerable increase in storage space and the computational load to process the data. ...
-
Woloszynski, Tomasz; Podsiadlo, Pawel; Kurzynski, M.; Stachowiak, Gwidon (2010)PURPOSE: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of ...
-
Recio, J.; Helmholz, Petra; Müller, S. (2012)In many publications the performance of different classification algorithms regarding to agricultural classes is evaluated. In contrast, this paper focuses on the potential of different imagery for the classification of ...