Switching of Current Rectification Ratios within a Single Nanocrystal by Facet-Resolved Electrical Wiring
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
Additional URLs
ISSN
School
Funding and Sponsorship
Collection
Abstract
Here we show that within a single polyhedral metal oxide nanoparticle a nanometer-scale lateral or vertical sliding of a small metal top contact (e.g., <50 nm) leads to a 10-fold change in current rectification ratios. Electron tunnelling imaging and constant-force current-potential analysis in atomic force microscopy demonstrate that within an individual p-n rectifier (a Cu2O nanocrystal on silicon) the degree of current asymmetry can be modulated predictably by a set of geometric considerations. We demonstrate the concept of a single nanoscale entity displaying an in-built range of discrete electrical signatures and address fundamental questions in the direction of "landing" contacts in single-particle diodes. This concept is scalable to large 2D arrays, up to millimetres in size, with implications in the design and understanding of nanoparticle circuitry.
Related items
Showing items related by title, author, creator and subject.
-
Borle, Lawrence J. (1999)This thesis is concerned primarily with the optimization of the current regulation in bi-directional ac-dc power converters through the use of appropriate current control methods. Following a review into prior current ...
-
Moore, Brioni R. (2011)Murine malaria models have proved to be a valuable preclinical tool, particularly in the development of new concepts in the research of human malaria. Plasmodium berghei (P. berghei), is the most extensively studied and ...
-
Peiris, Chandramalika R; Vogel, Yan B; Le Brun, Anton P; Aragonès, Albert C; Coote, Michelle L; Díez-Pérez, Ismael; Ciampi, Simone ; Darwish, Nadim (2019)Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the ...