Adaptive PID Control of Wind Turbines for Power Regulation with Unknown Control Direction and Actuator Faults
Citation
Source Title
ISSN
School
Collection
Abstract
Proportional integral derivative (PID) regulators are the most practical control schemes for industrial wind turbines. The key to PID design is the determination of the control parameter gains, which motivated our attempts to construct an adaptive PID control for wind turbines allowing auto-tuning of the gains without the need for trial and error processes. By equipping a novel PID-based fault-tolerant controller with a Nussbaum-type function, a robust adaptive and fault-tolerant control scheme is developed for wind turbines. Compared with available methods, the proposed controller has advantages such as, ability for dealing with complete nonlinear dynamics of wind turbines including model uncertainty, ability to ensure system stability by using an adaptive self-tuning gain algorithm, and robustness against wind speed variation. Furthermore, it has the ability to accommodate unexpected actuator faults and the accommodation of an unknown control direction. However, the salient feature of the proposed controller lies in its simple structure and inexpensive online computational demands while dealing with the nonlinear dynamics of wind turbines and unknown disturbances. It is shown that the proposed pitch angle controller remains continuous and smooth and all the closed-loop system signals are guaranteed to be uniformly ultimately bounded. Theoretical analysis and numerical simulations are presented to confirm the effectiveness of the proposed control strategy.
Related items
Showing items related by title, author, creator and subject.
-
Habibi, Hamed ; Nohooji, H.R.; Howard, Ian ; Simani, S. (2019)This paper presents a novel adaptive fault-tolerant neural-based control design for wind turbines with an unknown dynamic and unknown wind speed. By utilizing the barrier Lyapunov function in the analysis of the Lyapunov ...
-
Mohseni, Mansour (2011)A review of the latest international grid codes shows that large wind power plants are stipulated to not only ride-through various fault conditions, but also exhibit adequate active and reactive power responses during the ...
-
Habibi, H.; Rahimi Nohooji, H.; Howard, Ian (2017)Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown ...