Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Improvement of catalytic activity over Mn-modified CeZrOx catalysts for the selective catalytic reduction of NO with NH3

    Access Status
    Fulltext not available
    Authors
    Sun, W.
    Li, X.
    Mu, J.
    Fan, S.
    Yin, Z.
    Wang, X.
    Qin, M.
    Tade, Moses
    Liu, Shaomin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sun, W. and Li, X. and Mu, J. and Fan, S. and Yin, Z. and Wang, X. and Qin, M. et al. 2018. Improvement of catalytic activity over Mn-modified CeZrOx catalysts for the selective catalytic reduction of NO with NH3. Journal of Colloid and Interface Science. 531: pp. 91-97.
    Source Title
    Journal of Colloid and Interface Science
    DOI
    10.1016/j.jcis.2018.07.050
    ISSN
    0021-9797
    Faculty
    Faculty of Science and Engineering
    URI
    http://hdl.handle.net/20.500.11937/70146
    Collection
    • Curtin Research Publications
    Abstract

    A series of MnCeZrOxmixed oxide catalysts were facilely synthesized using the impregnation-NH3·H2O coprecipitation method and tested for selective catalytic reduction (SCR) of NO with NH3. Doping manganese significantly improved the catalytic activity and the best performing SCR catalyst, Mn0.25Ce0.5Zr0.25Ox, was shown to achieve NO conversion > 80% in the temperature range (60–350 °C), with the denitration effect up to 50% at room temperature (conditions: [NO] = [NH3] = 500 ppm, [O2] = 5 vol%, He as balance, flow rate = 100 mL/min, GHSV = 40, 000 h-1). Characterization of the catalyst using BET, XRD, XPS, H2-TPR, and in-situ FTIR proved that the improved SCR activity may be attributed to the large surface area, great reduction ability and increased amount of surface adsorbed oxygen afforded by the introduction of manganese. The SCR reaction mechanisms were also investigated by analyzing in-situ FTIR spectra and the SCR reaction pathway over the Mn0.25Ce0.5Zr0.25Oxcatalyst was shown to mostly follow the E-R mechanism.

    Related items

    Showing items related by title, author, creator and subject.

    • Bimetallic Ni-M (M = Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming
      Wang, Y.; Chen, M.; Yang, Z.; Liang, T.; Liu, Shaomin; Zhou, Z.; Li, X. (2018)
      Monometallic Ni and bimetallic Ni-Co, Ni-Cu, and Ni-Zn catalysts supported on attapulgite (ATP) were prepared by chemical precipitation method and evaluated in the glycerol steam reforming (GSR) reaction under the following ...
    • Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics
      Fansuri, Hamzah (2005)
      Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
    • Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane
      Wang, W.; Ran, R.; Shao, Zongping (2011)
      Ni-Al2O3 catalyst is modified with Li 2O3, La2O3 and CaO promoters to improve its resistance to coking. These catalysts are used as the materials of the anode catalyst layer in solid-oxide fuel cells operating on methane. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.