Monitoring blasting events in an underground mine with artificial intelligence techniques
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2017 International Society for Structural Health Monitoring of Intelligent Infrastrucure. All rights reserved. This paper proposes to use Convolutional Neural Network (CNN) to identify the Time Delay of Arrival (TDOA) and subsequently the source location of micro-seismic events. For any two sensor waveforms recorded from the same event, the cross wavelet transform power and phase spectra, and the corresponding output function values can be obtained. They will be treated as the input and output of the CNN model for training. The measured data from eight blasting tests in an underground mine are used to test the trained CNN model and identify the location of the conducted blasting test. The exact locations of these in-field blasting tests are available in prior and will be taken as the references for demonstrating the accuracy of the proposed approach. Results demonstrate the accuracy of using the proposed approach in identifying the in-field blasting event locations.
Related items
Showing items related by title, author, creator and subject.
-
Huang, L.; Li, Jun; Hao, Hong; Li, X. (2018)Recent years have witnessed a clear trend to develop deeper and longer tunnels to meet the growing needs of mining. Micro-seismic events location is vital for predicting and avoiding the traditional mine disasters induced ...
-
Hao, Hong; Hao, Y.; Li, J.; Chen, Wensu (2016)© The Author(s) 2016.In contemporary society, industrialization and rising of terrorism threats highlight the necessity and importance of structural protection against accidental and intentionally malicious blast loads. ...
-
Hao, Hong; Li, Jun (2015)Efficiently and accurately predicting structural dynamic response and damage to external blast loading is a big challenge to both structural engineers and researchers. Theoretical investigation on this problem is complex ...