An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The emerging GNSSs make single-frequency (SF) RTK positioning possible. In this contribution two different types of low-cost (few hundred USDs) RTK receivers are analyzed, which can track L1 GPS, B1 BDS, E1 Galileo and L1 QZSS, or any combinations thereof, for a location in Dunedin, New Zealand. These SF RTK receivers can potentially give competitive ambiguity resolution and positioning performance to that of more expensive (thousands USDs) dual-frequency (DF) GPS receivers. A smartphone implementation of one of these SF receiver types is also evaluated. The least-squares variance component estimation (LS-VCE) procedure is first used to formulate a realistic stochastic model, which assures that our receivers at hand can achieve the best possible ambiguity resolution and RTK positioning performance. The best performing low-cost SF RTK receiver types are then assessed against DF GPS receivers and survey-grade antennas. Real data with ionospheric disturbances at low, medium and high levels are analyzed, while making use of the ionosphere-weighted model. It will be demonstrated that when the presence of the residual ionospheric delays increases, instantaneous RTK positioning is not possible for any of the receivers, and a multi-epoch model is necessary to use. It is finally shown that the low-cost SF RTK performance can remain competitive to that of more expensive DF GPS receivers even when the ionospheric disturbance level reaches a Kp-index of 7-, i.e. for a strong geomagnetic storm, for the baseline at hand.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, B.; Teunissen, Peter; Yuan, Y.; Zhang, H.; Li, M. (2017)Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one ...
-
Odijk, Dennis; Teunissen, Peter; Zhang, Baocheng (2011)As an improvement over 'conventional' PPP, Real-Time Kinematic Precise Point Positioning (PPP-RTK) is a promising technique for high-precision (cm-level) carrier-phase based remote sensing platform positioning. The key ...
-
Odolinski, R.; Teunissen, Peter (2017)With the combination of emerging GNSSs, single-frequency (SF) precise RTK positioning becomes possible. In this contribution we evaluate such low-cost ublox receiver and antenna performance when combining real data of ...