Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The determination of interseismic, coseismic and postseismic deformations caused by the Gökçeada-Samothraki earthquake (2014, Mw: 6.9) based on GNSS data

    Access Status
    Fulltext not available
    Authors
    Tiryakioglu, I.
    Yigit, Cemal Ozer
    Yavasoglu, H.
    Saka, M.
    Alkan, R.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tiryakioglu, I. and Yigit, C.O. and Yavasoglu, H. and Saka, M. and Alkan, R. 2017. The determination of interseismic, coseismic and postseismic deformations caused by the Gökçeada-Samothraki earthquake (2014, Mw: 6.9) based on GNSS data. Journal of African Earth Sciences. 133: pp. 86-94.
    Source Title
    Journal of African Earth Sciences
    DOI
    10.1016/j.jafrearsci.2017.05.012
    ISSN
    1464-343X
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/70814
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Elsevier Ltd Since the 1990s, seismic deformations have been commonly determined using the Global Navigation Satellite System (GNSS). Recently, the GNSS systems have become even more powerful with the use of new technologies in innovative studies. In this study, the GNSS data was used to investigate interseismic, coseismic and postseismic deformation and velocity of the Gökçeada-Samothraki earthquake (Mw = 6.9) that occurred on May 24, 2014. The data was obtained at 30 s (0.033 Hz) and 1 s (1 Hz) intervals from the GNSS receivers in the network of Continuously Operating Reference Stations, Turkey (CORS-TR). For the interseismic period, the daily coordinate time series of 12 stations located within 90–250 km of the earthquake epicenter was evaluated for the displacement of stations over a period of approximately 2000 days prior to the day of the earthquakes, from October 1, 2008 to May 23, 2014. In order to analyze the ground motion displacement during the Gökçeada-Samothraki earthquake, 1 Hz data from 8 continuous GNSS stations was processed using precise point positioning (PPP) and relative positioning methods to estimate the epoch-by-epoch positions of the stations. During the earthquake, coseismic displacements of approximately 7 and 30 mm were detected in the NW direction at the YENC and CANA stations, respectively. However, at the IPSA station, a coseismic deformation of 20 mm was observed in the NE direction. There were no significant changes at the other stations during the earthquake. For the postseismic period, the daily coordinate time series of the 12 stations were evaluated for station displacements for 570 days after the day of the earthquakes, from May 24, 2014 to January 1, 2016. The results demonstrated that no significant postseismic deformation with the exception of the EDIR station. An abnormal deformation caused by local factors was determined at the EDIR station. In this study, the PPP and the relative solution were also compared in terms of capturing the earthquake wave motion. The results demonstrated that the PPP-based solutions showed good agreement with those of relative positioning in terms of the ability to capture coseismic displacement.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table
      Yigit, Cemal Ozer ; El-Mowafy, Ahmed ; Anil Dindar, A.; Bezcioglu, M.; Tiryakioglu, I. (2021)
      © 2020 American Society of Civil Engineers. This paper investigates the usability of Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) methods, traditional PPP with a float-ambiguity solution and ...
    • Investigating the effects of ultra-rapid, rapid vs. Final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements
      Yigit, Cemal Ozer ; El-Mowafy, Ahmed ; Bezcioglu, M.; Dindar, A.A. (2020)
      Copyright © 2020 Techno-Press, Ltd. The use of final IGS precise orbit and clock products for high-rate GNSS-PPP proved its effectiveness in capturing dynamic displacement of engineering structures caused by earthquakes. ...
    • The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study
      Yigit, Cemal Ozer; Coskun, M.; Yavasoglu, H.; Arslan, A.; Kalkan, Y. (2016)
      © 2016 Elsevier Ltd. All rights reserved. Relative/network GPS/GNSS (Global Positioning System/Global Navigation Satellite System) positioning has been widely used to precisely measure both structural and crustal deformation ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.