Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table

    82850.pdf (1.582Mb)
    Access Status
    Open access
    Authors
    Yigit, Cemal Ozer
    El-Mowafy, Ahmed
    Anil Dindar, A.
    Bezcioglu, M.
    Tiryakioglu, I.
    Date
    2021
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yigit, C.O. and El-Mowafy, A. and Anil Dindar, A. and Bezcioglu, M. and Tiryakioglu, I. 2021. Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table. Journal of Surveying Engineering. 147 (1).
    Source Title
    Journal of Surveying Engineering
    DOI
    10.1061/(ASCE)SU.1943-5428.0000343
    ISSN
    0733-9453
    Faculty
    Faculty of Science and Engineering
    School
    School of Earth and Planetary Sciences (EPS)
    Remarks

    This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at 10.1061/(ASCE)SU.1943-5428.0000343.

    URI
    http://hdl.handle.net/20.500.11937/82808
    Collection
    • Curtin Research Publications
    Abstract

    © 2020 American Society of Civil Engineers. This paper investigates the usability of Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) methods, traditional PPP with a float-ambiguity solution and with ambiguity resolution (PPP-AR), in structural health monitoring applications based on experimental tests using a single-axis shake table. To evaluate the performance of the PPP methodologies, harmonic oscillations of the motion table with amplitudes ranging from 5 to 10 mm and frequency between 0.1 and 3 Hz were generated representing a wide range of possible structural motions. In addition, ground motion similar to those experienced during a real earthquake, the 1995 Kobe earthquake, and step motions were generated on the shake table. GNSS PPP-derived positioning results at 20 Hz were compared, in both of the frequency and time domains, with reference data comprising LVDT data and relative positioning data. Results show that both PPP methods' measurements can be used in the computation of harmonic oscillation frequencies compared to the LVDT and relative positioning values. The observed amplitudes of the harmonic oscillations are slightly different from the LVDT values on the order of millimeters. The results of a step motion experiment demonstrated that PPP-AR is better than traditional PPP in exhibiting quasi-static or static displacement. Moreover, the capabilities of traditional PPP and PPP-AR methods are evaluated with respect to the natural frequency of a small-scale structural model excited on the shake table. The frequency spectrum of this small-scale structural model derived from the PPP methods is consistent with finite-element model (FEM)-predicted values and relative positioning. The research presented here demonstrates the potential of the high-rate GNSS PPP and PPP-AR methods to reliably monitor structural and earthquake-induced vibration frequencies and amplitudes for both structural and seismological applications. Specifically, all results reveal that high-rate PPP-AR is more accurate than traditional PPP for both dynamic and static displacement detection.

    Related items

    Showing items related by title, author, creator and subject.

    • Hybrid Wavelet and Principal Component Analyses Approach for Extracting Dynamic Motion Characteristics from Displacement Series Derived from Multipath-Affected High-Rate GNSS Observations
      Kaloop, M.; Yigit, Cemal; El-Mowafy, Ahmed ; Dindar, A.; Bezcioglu, M.; Hu, J. (2020)
      Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement ...
    • Investigating the ability of high-rate GNSS-PPP for determining the vibration modes of engineering structures: small scale model experiment
      Yigit, Cemal; Dindar, A.; El-Mowafy, Ahmed ; Bezcioglu, M.; Gikas, V. (2019)
      This study evaluates the performance of the Precise Point Positioning method using Global Navigation Satellite System measurements (GNSS-PPP) for monitoring vibration modes of shear type buildings excited by harmonic ...
    • Evaluation of real-time variometric approach and real-time precise point positioning in monitoring dynamic displacement based on high-rate (20 Hz) GPS Observations
      Bezcioglu, M.; Yigit, Cemal Ozer ; Karadeniz, B.; Dindar, A.A.; El-Mowafy, Ahmed ; Avcı, Ö. (2023)
      We present the performance of real-time (RT)-precise point positioning (PPP) and GNSS-based variometric approach for displacement analysis stand-alone engine (VADASE) methods in capturing dynamic motions in real time. To ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.