Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells

    Access Status
    Fulltext not available
    Authors
    Gu, B.
    Sunarso, J.
    Zhang, Y.
    Song, Y.
    Yang, G.
    Zhou, W.
    Shao, Zongping
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Gu, B. and Sunarso, J. and Zhang, Y. and Song, Y. and Yang, G. and Zhou, W. and Shao, Z. 2018. A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. Journal of Power Sources. 405: pp. 124-131.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2018.10.025
    ISSN
    0378-7753
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/70831
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 Elsevier B.V. CO2-resistant perovskite cathode has a significant role in solid oxide fuel cell (SOFC) application particularly for operation in an air atmosphere contains higher than normal amount of CO2such as in single-chamber SOFC (SC-SOFC). This work features a systematic study of the electrochemical performance of SrCo0.8Nb0.1Ta0.1O3-d(SCNT)-Ce0.9Gd0.1O2-d(GDC) composite cathode under CO2exposure for SOFC operation in low-temperature (LT, 500 °C and below) and intermediate-temperature (IT, 500–700 °C) ranges. The complementary results from powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, in situ high temperature XRD, electrochemical impedance spectroscopy, and the single cell test show that SCNT-GDC cathode exhibit slightly lower electrochemical performance but higher CO2resistance than SCNT, which enables practical SOFC application. At 550 °C, SCNT-GDC-based single cell has a peak power density of 630 mW cm-2and reduces to a stable power density of 525 mW cm-2after exposure to air containing 1 vol% CO2for 2 h. The collective characterization and electrochemical data presented here highlight the potential of SCNT-GDC composite cathode for use in SC-SOFC and to enhance the performance stability in LT and IT-SOFCs.

    Related items

    Showing items related by title, author, creator and subject.

    • Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
      Zhou, W.; Ran, R.; Shao, Zongping (2009)
      Solid-oxide fuel cells (SOFCs) convert chemical energy directly into electric power in a highly efficient way. Lowering the operating temperature of SOFCs to around 500-800 °C is one of the main goals in current SOFC ...
    • Chromium deposition and poisoning of cathodes of solid oxide fuel cells: A review
      Jiang, San Ping; Chen, X. (2013)
      Intermediate temperature solid oxide fuel cells (IT-SOFCs) using chromia-forming alloy interconnect requires the development of cathode not only with high electrochemical activity but also with the high resistance or ...
    • Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells
      Li, Meng; Chen, Kongfa; Hua, B.; Luo, J.; Rickard, William; Li, J.; Irvine, J.; Jiang, San Ping (2016)
      Cobaltite-based double perovskite oxides with high electrocatalytic activity and conductivity have been developed as high-performance cathode alternatives for solid oxide fuel cells (SOFCs). However, the use of cobaltite-based ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.