Fine-Tuning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Cost-effective, stable, and highly efficient heterogeneous catalyst is the key challenge for wastewater treatment based on Fenton-like advanced oxidation processes. Perovskite oxides offer new opportunities because of their versatile compositions and flexible physiochemical properties. Herein, a new strategy is proposed that is different from the frequently used alien-metal doping, to tune surface properties of perovskite oxides by nanocompositing perovskite with inert oxide, resulting in improved activity and stability for catalytic oxidation. By in situ modification of LaFeO3 with inert La2O3 oxide through one-pot synthesis, several important surface properties such as surface defects, H2O2 adsorption capacity, Fe2+ concentration, and charge-transfer rate were improved, as well as resistance against iron leaching. In performance evaluation, among the various materials, La1.15FeO3 (L1.15FO) composite shows the highest Fenton activity (0.0402 min-1) for activating H2O2 to oxidize methyl orange, 2.5 times that of the pristine LaFeO3. Notably, in situ electron paramagnetic resonance analysis and radical scavenging tests unveil a faster generation of singlet oxygen as the dominant reactive species over L1.15FO, consequently a novel non-radical activation mechanism is proposed. Such improved performance is assigned to the strong coupling effect between the nanosized LaFeO3 and La2O3 in the hybrids, which fine-tune the surface properties of LaFeO3 perovskite as superior Fenton catalysts.
Related items
Showing items related by title, author, creator and subject.
-
Dai, J.; Zhu, Y.; Zhong, Y.; Miao, J.; Lin, B.; Zhou, W.; Shao, Zongping (2019)The catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are crucial for water splitting technology, and perovskite oxides have received tremendous attention as promising candidates due to ...
-
She, S.; Yu, J.; Tang, W.; Zhu, Y.; Chen, Y.; Sunarso, J.; Zhou, W.; Shao, Zongping (2018)Perovskite oxide is an attractive low-cost alternative catalyst for oxygen evolution reaction (OER) relative to the precious metal oxide-based electrocatalysts (IrO 2 and RuO 2 ). In this work, a series of Sr-doped La-based ...
-
Khine, M.; Chen, L.; Zhang, S.; Lin, J.; Jiang, San Ping (2013)Hydrogen is a clean energy carrier for the future. More efficient, economic and small-scale syngas production has therefore important implications not only on the future sustainable hydrogen-based economy but also on the ...