Polydopamine-enabled distribution of polysiloxane domains in polyamide thin-film nanocomposite membranes for organic solvent nanofiltration
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Elsevier B.V. Thin-film nanocomposite (TFN) membranes have attracted growing interests for improving the energy efficiency of many chemical separation processes, while well-designed microstructures are essential to acquire high permeation flux, high selectivity and high stability for different types of permeates. Herein, a novel strategy to regulate the microstructures and solvent permeation properties of TFN membranes is developed. Hydrophobic polysiloxane domains are proposed to be evenly distributed within hydrophilic polyamide matrix with the mediation of polydopamine nanoparticles (PDNPs). To be specific, PDNPs treated by 3-(triethoxysilyl)- propylamine (APTES) allow PDMS converge on its surface, so as to form nano-sized poly(dimethylsiloxane) (PDMS) domains within the active layer of TFN membranes. With polyethyleneimine (PEI) as the aqueous phase monomer during conventional interfacial polymerization (IP), trimesoyl chloride not only acts as the oil phase monomer, but also reacts with the terminal hydroxyl groups of PDMS, facilitating the uniform dispersion of the nanoparticles within the PEI matrix. By tuning the ratio of PDNPs to PDMS, PDMS could be uniformly dispersed within the active layer together with PDNPs, which effectively construct hydrophobic pathways for nonpolar solvents. A maximum permeate flux for n-heptane of 7.9 L m-2h-1bar-1at 10 bar is achieved, along with moderate area swelling (3.16%) and rather low MWCOs (below 400). Meanwhile, these TFN membranes containing PDMS domains still display appropriate permeate fluxes for polar solvents due to the maintenance of hydrophilic pathways, as well as enhanced rejection ability and potential long-term operation stability than the control membranes.
Related items
Showing items related by title, author, creator and subject.
-
Heng, M.; Zhang, H.; Li, Y.; Xue, Y.; Pei, F.; Wang, J.; Liu, Jian (2015)© 2015 American Chemical Society. Design and fabrication of thin film nanocomposite (TFN) membranes with tunable solvent permeation properties is highly required to meet the demands of practical applications. Herein, a ...
-
Wu, X.; Hao, L.; Zhang, J.; Zhang, X.; Wang, J.; Liu, Jian (2016)© 2016 Elsevier B.V. Solvent resistant nanofiltration (SRNF) technology is an energy efficient and environmentally friendly alternative to purify alcohol-based mixtures, but there exists a challenge in overcoming the ...
-
Krishnan, Gayathri (2011)Transdermal drug delivery is an effective alternative to conventional oral and injectable drug delivery routes. It offers painless and convenient once daily or even once weekly dosing for a variety of clinical indications. ...