Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base

    Access Status
    Fulltext not available
    Authors
    Li, T.
    Liu, Yu
    Qi, S.
    Liu, X.
    Huang, L.
    Sun, L.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, T. and Liu, Y. and Qi, S. and Liu, X. and Huang, L. and Sun, L. 2018. Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. Journal of Colloid and Interface Science. 526: pp. 366-373.
    Source Title
    Journal of Colloid and Interface Science
    DOI
    10.1016/j.jcis.2018.05.002
    ISSN
    0021-9797
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/71412
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 The design of new type of solid strong base with ideal activity, stability, and reusability is strongly urged by the growing demand of green chemistry and sustainable development. In this study, a new type of mesoporous solid strong base, denoted as CaO/mSiO2/Fe3O4, is successfully fabricated by successively coating SiO2 onto Fe3O4 magnetic nanoparticles and loading CaO into the mesoporous SiO2. Compared with a series of other typical solid bases, the CaO/mSiO2/Fe3O4 exhibits higher activity towards the synthesis of dimethyl carbonate by the transesterification of ethylene carbonate and methanol. The activity of the CaO/mSiO2/Fe3O4 is not observed to decrease obviously even after sextic catalyst recirculation, and in particular, the recovery of the catalyst without quality loss is very convenient due to the good magnetic responsiveness of the Fe3O4 cores.

    Related items

    Showing items related by title, author, creator and subject.

    • MOF derived mesoporous K-ZrO2 with enhanced basic catalytic performance for Knoevenagel condensations
      Wang, P.; Feng, J.; Zhao, Y.; Gu, S.; Liu, Jian (2017)
      © 2017 The Royal Society of Chemistry. Mesoporous K-ZrO 2 are designed and synthesized through a direct heat-treatment process of a KNO 3 loaded UiO-66 metal organic framework. Very interestingly, the carbon intermediates ...
    • Mesoporous materials for fuel cells
      Zhang, J.; Jiang, San Ping (2016)
      Fuel cell is the most efficient and environmentally friendly energy conversion technology to directly convert the chemical energy of fuels such as hydrogen, methane, methanol, ethanol and hydrocarbons into electricity ...
    • Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
      Tang, H.; Pan, M.; Jiang, San ping (2011)
      A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H3PW12O40, abbreviated as HPW or PWA)–silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.