Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Powering smart pipes with fluid flow: Effect of velocity profiles

    Access Status
    Fulltext not available
    Embargo Lift Date
    2023-09-25
    Authors
    Lumentut, Mikail
    Friswell, M.I.
    Date
    2022
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Lumentut, M.F. and Friswell, M.I. 2022. Powering smart pipes with fluid flow: Effect of velocity profiles. Computers and Structures. 258: Article No. 106680.
    Source Title
    Computers and Structures
    DOI
    10.1016/j.compstruc.2021.106680
    ISSN
    0045-7949
    Faculty
    Faculty of Science and Engineering
    School
    School of Civil and Mechanical Engineering
    URI
    http://hdl.handle.net/20.500.11937/88201
    Collection
    • Curtin Research Publications
    Abstract

    The dynamics of elastic cantilevered smart pipes conveying fluid with non-uniform flow velocity profiles is presented for optimal power generation. The Navier-Stokes equations are used to model the incompressible flow in the circular smart pipe, and flow profile modification factors are formulated based on the Reynolds number and Darcy friction factor. The coupled constitutive dynamic equations, including the electrical circuit, are formulated for laminar and turbulent flows. Due to viscosity in a real fluid, non-uniform flow profiles induce dynamic stability and instability phenomena that affect the generated power. The system consists of an elastic pipe with segmented smart material located on the circumference and longitudinal regions, the circuit, and the electromechanical components. The modified coupled constitutive equations are solved using the weak form extended Ritz method. For faster convergence, this model is reduced from the exact solution of the pipe structure with proof mass offset. Initial validation with a uniform flow profile from previous work is conducted. With increasing flow velocity, the optimal power output and their frequency shifts are investigated both with and without the flow profile modification factors, to identify the level of instability. Further parametric studies with and without flow pulsation and base excitation are given.

    Related items

    Showing items related by title, author, creator and subject.

    • A smart pipe energy harvester excited by fluid flow and base excitation
      Lumentut, Mikail; Friswell, M. (2018)
      This paper presents an electromechanical dynamic modelling of the partially smart pipe structure subject to the vibration responses from fluid flow and input base excitation for generating the electrical energy. We believe ...
    • Multiphase Transient Flow in Pipes
      Ben Mahmud, Hisham (2012)
      The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
    • Optimal dispatch of shunt capacitors and load tap changers in distorted distribution systems using ant colony algorithms
      Deilami, Sara (2010)
      This thesis investigates the performances of a class of intelligent system algorithms in solving the volt/VAr/THD control problem for large distribution systems. For this purpose, optimal dispatch of Load Tap Changers ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.