Elastic full-waveform inversion for VTI media: A synthetic parameterization study
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 Society of Exploration Geophysicists. One of the main challenges for full-waveform inversion (FWI) is taking into account both anisotropy and elasticity. Here, we perform elastic FWI for a synthetic 2D VTI (transversely isotropic with a vertical symmetry axis) model based on the geologic section at Valhall field in the North Sea. Multicomponent surface data are generated by a finite-difference code. We apply FWI in the time domain using a multiscale approach with three frequency bands. An approximate inverse Hessian matrix, computed using the L-BFGS-B algorithm, is employed to scale the gradients of the objective function and improve the convergence. In the absence of significant diving-wave energy in the deeper part of the section, the model is updated primarily with reflection data. An oblique displacement source, which excites sufficiently intensive shear waves in the conventional offset range, helps provide more accurate updates in the Shear-wave vertical velocity, especially in the shallow layers. We test three model parameterizations, which exhibit different radiation patterns and, therefore, create different parameter trade-offs. Whereas most examples are for a constant-density model, we also generate a density field using Gardner's relationship and invert for the density along with the velocity parameters. The parameterizations that combine velocities and anisotropy coefficients generally yield superior results to the one that includes only velocities, provided that a reasonably accurate initial model is available.
Related items
Showing items related by title, author, creator and subject.
-
Ben Mahmud, Hisham (2012)The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
-
Li, Ruiping (2002)In most cases of seismic processing and interpretation, elastic isotropy is assumed. However, velocity anisotropy is found to exist in most subsurface media. Hence, there exists a fundamental inconsistency between theory ...
-
Kieu, D.; Kepic, Anton; Kitzig, M. (2018)P-wave and S-wave velocities are vital parameters for the processing of seismic data and may be useful for geotechnical studies used in mine planning if such data were collected more often. Seismic velocity data from ...