Show simple item record

dc.contributor.authorLiu, K.
dc.contributor.authorWang, L.
dc.contributor.authorOstadhassan, M.
dc.contributor.authorZou, J.
dc.contributor.authorBubach, B.
dc.contributor.authorRezaee, M. Reza
dc.date.accessioned2018-12-13T09:11:26Z
dc.date.available2018-12-13T09:11:26Z
dc.date.created2018-12-12T02:46:50Z
dc.date.issued2019
dc.identifier.citationLiu, K. and Wang, L. and Ostadhassan, M. and Zou, J. and Bubach, B. and Rezaee, M.R. 2019. Nanopore structure comparison between shale oil and shale gas: examples from the Bakken and Longmaxi Formations. Petroleum Science. 16 (1): pp. 77–93.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/71828
dc.identifier.doi10.1007/s12182-018-0277-3
dc.description.abstract

© 2018, The Author(s). In order to analyze and compare the differences in pore structures between shale gas and shale oil formations, a few samples from the Longmaxi and Bakken Formations were collected and studied using X-ray diffraction, LECO TOC measurement, gas adsorption and field-emission scanning electron microscope. The results show that samples from the Bakken Formation have a higher TOC than those from the Longmaxi Formation. The Longmaxi Formation has higher micropore volume and larger micropore surface area and exhibited a smaller average distribution of microsize pores compared to the Bakken Formation. Both formations have similar meso-macropore volume. The Longmaxi Formation has a much larger meso-macropore surface area, which is corresponding to a smaller average meso-macropore size. CO2 adsorption data processing shows that the pore size of the majority of the micropores in the samples from the Longmaxi Formation is less than 1 nm, while the pore size of the most of the micropores in the samples from the Bakken Formation is larger than 1 nm. Both formations have the same number of pore clusters in the 2–20 nm range, but the Bakken Formation has two additional pore size groups with mean pore size diameters larger than 20 nm. Multifractal analysis of pore size distribution curves that was derived from gas adsorption indicates that the samples from the Longmaxi Formation have more significant micropore heterogeneity and less meso-macropore heterogeneity. Abundant micropores as well as meso-macropores exist in the organic matter in the Longmaxi Formation, while the organic matter of the Bakken Formation hosts mainly micropores.

dc.publisherChina University of Petroleum
dc.titleNanopore structure comparison between shale oil and shale gas: examples from the Bakken and Longmaxi Formations
dc.typeJournal Article
dcterms.source.issn1672-5107
dcterms.source.titlePetroleum Science
curtin.departmentWASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record