Show simple item record

dc.contributor.authorZou, Jie
dc.contributor.authorRezaee, M. Reza
dc.contributor.authorYuan, Yujie
dc.date.accessioned2018-12-13T09:11:40Z
dc.date.available2018-12-13T09:11:40Z
dc.date.created2018-12-12T02:46:50Z
dc.date.issued2018
dc.identifier.citationZou, J. and Rezaee, M.R. and Yuan, Y. 2018. Investigation on the adsorption kinetics and diffusion of methane in shale samples. Journal of Petroleum Science and Engineering. 171: pp. 951-958.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/71869
dc.identifier.doi10.1016/j.petrol.2018.08.010
dc.description.abstract

© 2018 Elsevier B.V.

Shale gas is becoming increasingly important to mitigate the energy crisis of the world. Understanding the mechanisms of gas transport in shale matrix is crucial for development strategies. In this study, methane adsorption kinetics in shale samples were measured under different pressures and temperatures. The results of methane adsorption rate were fitted by the bidisperse diffusion model. Pore structure of the shale samples were characterized by low-pressure N2 and CO2 adsorption. The results showed that pressure has a negative effect on methane adsorption rate and diffusion, while the effect of temperature is positive. Combining the total organic carbon (TOC) and pore structure, methane adsorption rate and effective diffusivity were compared between all the shale samples. The methane adsorption rate under high pressure (50bar) is positively related to the TOC content. The micropore volume showed a moderate positive relation with the methane adsorption rate at 30bar. A weak positive relation exists between the TOC and effective diffusivity at low pressure and the effective diffusivity at low pressure shows an increasing trend with micropore(<2 nm) volume. A hypothetic pore model is proposed: micropore in shales controls gas diffusion as pore throat which connects pores.

dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleInvestigation on the adsorption kinetics and diffusion of methane in shale samples
dc.typeJournal Article
dcterms.source.volume171
dcterms.source.startPage951
dcterms.source.endPage958
dcterms.source.issn0920-4105
dcterms.source.titleJournal of Petroleum Science and Engineering
curtin.departmentWASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
curtin.accessStatusOpen access


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/