Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Elsevier B.V. Developing efficient, low-cost and environmental-friendly catalysts is of great significance for heterogeneous activation of persulfates toward strategic purification of wastewater with powerful sulfate radical based advanced oxidation processes (SR-AOPs). In this study, a three-dimensional and hierarchical nitrogen-doped magnetic carbon (Co@N-C) was developed via a facile one-pot carbonization of ZIF-67 with a green precursor of urea. Acid treatment was applied to remove the surface unstable cobalt nanoparticles (NPs) to avoid the potential leaching of toxic Co ions. Benefited from the rationally structural design of the carbon precursor and post-treatment with surface engineering, the derived Co@N-C can efficiently activate PMS for fast decomposition of bisphenol A (BPA) in aqueous solution, achieving high removal of total organic carbon (TOC) with trace cobalt leaching. The impacts of diverse reaction parameters on BPA degradation were systematically investigated. More importantly, density functional theory (DFT) calculations revealed that the entrapped Co NPs can impressively modulate the electronic states of the interacted carbon regions, giving rise to enhanced carbocatalysis with synergistic promotion of N-doping. The embedded Co NPs also afford the carbocatalysts to be magnetic for an easy recycling. Additionally, comprehensive investigations of the evolution of reactive oxygen species (ROS) on the carbonaceous materials by competitive radical scavenging tests and in situ radical trapping with advanced electron paramagnetic resonance (EPR) revealed the singlet oxygen (1O2) as the dominant ROS rather than sulfate radicals. This study proposed a facile strategy for fabricating novel hybrid nanocarbon catalysts with N-doping and magnetic property and enables new mechanistic insights into carbocatalysis in AOPs, providing a promising system for green wastewater remediation.
Related items
Showing items related by title, author, creator and subject.
-
Yao, Y.; Chen, H.; Lian, C.; Wei, F.; Zhang, D.; Wu, G.; Chen, B.; Wang, Shaobin (2016)© 2016 Elsevier B.V. Magnetic metal M (M = Fe, Co, Ni) nanocrystals encapsulated in nitrogen-doped carbon nanotubes (MatN-C) were fabricated conveniently using dicyandiamide as a C/N precursor, and exhibited varying ...
-
Kang, J.; Zhang, H.; Duan, Xiaoguang; Sun, Hongqi; Tan, X.; Liu, Shaomin; Wang, Shaobin (2019)Nitrogen-doped carbon nanotubes encapsulated with Ni-Co alloy nanoparticles (NiCo@NCNTs) were readily synthesized by annealing Ni/Co salts with dicyandiamide. The magnetic nanocarbons were assembled as a flat membrane for ...
-
Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin (2018)Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free ...