Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The effect of H3O+ on the membrane morphology and hydrogen bonding of a phospholipid bilayer

    Access Status
    Fulltext not available
    Authors
    Deplazes, Evelyne
    Poger, D.
    Cornell, B.
    Cranfield, C.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Deplazes, E. and Poger, D. and Cornell, B. and Cranfield, C. 2018. The effect of H3O+ on the membrane morphology and hydrogen bonding of a phospholipid bilayer. Biophys Rev. 10 (5): pp. 1371-1376.
    Source Title
    Biophys Rev
    DOI
    10.1007/s12551-018-0454-z
    ISSN
    1867-2450
    School
    School of Pharmacy and Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/72571
    Collection
    • Curtin Research Publications
    Abstract

    © 2018, International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature. At the 2017 meeting of the Australian Society for Biophysics, we presented the combined results from two recent studies showing how hydronium ions (H3O+) modulate the structure and ion permeability of phospholipid bilayers. In the first study, the impact of H3O+ on lipid packing had been identified using tethered bilayer lipid membranes in conjunction with electrical impedance spectroscopy and neutron reflectometry. The increased presence of H3O+ (i.e. lower pH) led to a significant reduction in membrane conductivity and increased membrane thickness. A first-order explanation for the effect was assigned to alterations in the steric packing of the membrane lipids. Changes in packing were described by a critical packing parameter (CPP) related to the interfacial area and volume and shape of the membrane lipids. We proposed that increasing the concentraton of H3O+ resulted in stronger hydrogen bonding between the phosphate oxygens at the water–lipid interface leading to a reduced area per lipid and slightly increased membrane thickness. At the meeting, a molecular model for these pH effects based on the result of our second study was presented. Multiple µs-long, unrestrained molecular dynamic (MD) simulations of a phosphatidylcholine lipid bilayer were carried out and showed a concentration dependent reduction in the area per lipid and an increase in bilayer thickness, in agreement with experimental data. Further, H3O+ preferentially accumulated at the water–lipid interface, suggesting the localised pH at the membrane surface is much lower than the bulk bathing solution. Another significant finding was that the hydrogen bonds formed by H3O+ ions with lipid headgroup oxygens are, on average, shorter in length and longer-lived than the ones formed in bulk water. In addition, the H3O+ ions resided for longer periods in association with the carbonyl oxygens than with either phosphate oxygen in lipids. In summary, the MD simulations support a model where the hydrogen bonding capacity of H3O+ for carbonyl and phosphate oxygens is the origin of the pH-induced changes in lipid packing in phospholipid membranes. These molecular-level studies are an important step towards a better understanding of the effect of pH on biological membranes.

    Related items

    Showing items related by title, author, creator and subject.

    • The effects of cryosolvents on DOPC-ß-sitosterol bilayers determined from molecular dynamics simulations
      Hughes, Zak; Malajczuk, C.; Mancera, Ricardo (2013)
      Polyhydroxylated alcohols and DMSO are common cryosolvents that can damage cell membranes at sufficiently high concentrations. The interaction of representative plant cell membranes composed of mixed 1,2-dioleoyl-sn-gly ...
    • The effect of hydronium ions on the structure of phospholipid membranes
      Deplazes, Evelyne; Poger, D.; Cornell, B.; Cranfield, C. (2017)
      This work seeks to identify the mechanisms by which hydronium ions (H 3 O + ) modulate the structure of phospholipid bilayers by studying the interactions of H 3 O + with phospholipids at the molecular level. For this, ...
    • Molecular dynamics simulations of the interactions of DMSO, mono- and polyhydroxylated cryosolvents with a hydrated phospholipid bilayer
      Malajczuk, Chris; Hughes, Zak; Mancera, Ricardo (2013)
      Molecular dynamics (MD) simulations have been used to investigate the interactions of a variety of hydroxylated cryosolvents (glycerol, propylene glycol and ethylene glycol), methanol and dimethyl sulfoxide (DMSO) in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.