Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Method for suppressing superheating behavior during microwave assisted nanoparticle formation by ethylene glycol addition

    Access Status
    Fulltext not available
    Authors
    Asakuma, Y.
    Matsumura, S.
    Saptoro, Agus
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Asakuma, Y. and Matsumura, S. and Saptoro, A. 2018. Method for suppressing superheating behavior during microwave assisted nanoparticle formation by ethylene glycol addition. Chemical Engineering and Processing. 132: pp. 11-15.
    Source Title
    Chemical Engineering and Processing
    DOI
    10.1016/j.cep.2018.08.003
    ISSN
    0255-2701
    School
    Curtin Malaysia
    URI
    http://hdl.handle.net/20.500.11937/73400
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 Elsevier B.V. Microwave-assisted nanoparticle formation has been subject of interest of many researchers in producing nano-structured crystals and in this regard, previous studies have indicated that higher microwave power generally is desirable to have faster nanoparticle growth. Nevertheless, it has been acknowledged that high irradiation power especially at longer duration may cause superheating which degrades the product quality. Consequently, efforts should be dedicated in finding trade-off between preventing superheating and also ensuring both rapid particle growth and fine nanoparticle formation. This study was, therefore, carried out to propose and test a synergistic effect of microwave and addition of anti-solvent (ethylene glycol) in addressing the issues above. From the results and findings and comparisons with our previous studies on microwave assisted nanoparticle formation, adding anti-solvent is able to suppress superheating and swift bubble growth and consequently stable nanoparticle formation could be achieved. Moreover, it is also evident that a combined effect of microwave and anti-solvent results in not only stable but also finer nanoparticle formation. It is envisaged that the outcomes from this work may further contribute to fundamental aspects microwave assisted nanoparticle synthesis and its commercial applications.

    Related items

    Showing items related by title, author, creator and subject.

    • Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications
      Wang, S.; Jiang, San Ping; Wang, X. (2011)
      An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO2) nanoparticles on graphenenanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and ...
    • Evaluation of microwave heating on fluid invasion and phase trapping in tight gas reservoirs
      Wang, H.; Rezaee, M. Reza; Saeedi, A. (2015)
      During well drilling, completion, stimulation and fracturing, moisture invasion and phase trapping lead to a drastic permeability reduction, which prevent the tight gas reservoir producing at an economical rate. To eliminate ...
    • Bubble formation in water with magnetite nanoparticles during microwave irradiation
      Asakuma, Y.; Nakata, R.; Saptoro, Agus (2017)
      © 2017 Elsevier B.V. In this study, bubble formation phenomena in the dispersion medium of magnetite nanoparticle in water during microwave irradiation were investigated. From the experimental results, it was found that ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.