Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Optimization of computed tomography pulmonary angiography protocols using 3D printed model with simulation of pulmonary embolism

    Access Status
    Open access via publisher
    Authors
    Aldosari, S.
    Jansen, S.
    Sun, Zhonghua
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Aldosari, S. and Jansen, S. and Sun, Z. 2018. Optimization of computed tomography pulmonary angiography protocols using 3D printed model with simulation of pulmonary embolism. Quantitative Imaging in Medicine and Surgery. 9 (1): pp. 53-62.
    Source Title
    Quantitative Imaging in Medicine and Surgery
    DOI
    10.21037/qims.2018.09.15
    Additional URLs
    http://qims.amegroups.com/article/view/21792/21248
    ISSN
    2223-4292
    School
    School of Molecular and Life Sciences (MLS)
    URI
    http://hdl.handle.net/20.500.11937/73467
    Collection
    • Curtin Research Publications
    Abstract

    Background: Three-dimensional (3D) printing has been shown to accurately replicate anatomical structures and pathologies in complex cardiovascular disease. Application of 3D printed models to simulate pulmonary arteries and pulmonary embolism (PE) could assist development of computed tomography pulmonary angiography (CTPA) protocols with low radiation dose, however, this has not been studied in the literature. The aim of this study was to investigate optimal CTPA protocols for detection of PE based on a 3D printed pulmonary model. Methods: A patient-specific 3D printed pulmonary artery model was generated with thrombus placed in both main pulmonary arteries to represent PE. The model was scanned with 128-slice dual-source CT with slice thickness of 1 and 0.5 mm reconstruction interval. The tube voltage was selected to range from 70, 80, 100 to 120 kVp, and pitch value from 0.9 to 2.2 and 3.2. Quantitative assessment of image quality in terms of signal-to-noise ratio (SNR) was measured in the main pulmonary arteries and within the thrombus regions to determine the relationship between image quality and scanning protocols. Both two-dimensional (2D) and 3D virtual intravascular endoscopy (VIE) images were generated to demonstrate pulmonary artery and thrombus appearances. Results: PE was successfully simulated in the 3D printed pulmonary artery model. There were no significant differences in SNR measured in the main pulmonary arteries with 100 and 120 kVp CTPA protocols (P>0.05), regardless of pitch value used. SNR was significantly lower in the high-pitch 3.2 protocols when compared to other protocols using 70 and 80 kVp (P<0.05). There were no significant differences in SNR measured within the thrombus among the 100 and 120 kVp protocols (P>0.05). For low dose 70 and 80 kVp protocols, SNR was significantly lower in the high-pitch of 3.2 protocols than that in other protocols with different pitch values (P<0.01). 2D images showed the pulmonary arteries and thrombus clearly, while 3D VIE demonstrated intraluminal appearances of pulmonary wall and thrombus in all protocols, except for the 70 kVp and pitch 3.2 protocol, with visualization of thrombus and pulmonary artery wall affected by artifact associated with high image noise. Radiation dose was reduced by up to 80% when lowering kVp from 120 to 100 and 80 kVp with use of 3.2 high-pitch protocol, without significantly affecting image quality. Conclusions: Low-dose CT pulmonary angiography can be achieved with use of low kVp (80 and 100) and high-pitch protocol with significant reduction in radiation dose while maintaining diagnostic images of PE. Use of high pitch, 3.2 in 70 kVp protocol should be avoided due to high image noise and poorer quality.

    Related items

    Showing items related by title, author, creator and subject.

    • Patient-specific 3D printed pulmonary artery model with simulation of peripheral pulmonary embolism for developing optimal computed tomography pulmonary angiography protocols
      Aldosari, S.; Jansen, S.; Sun, Zhonghua (2019)
      Background: Computed tomography pulmonary angiography (CTPA) is the preferred imaging modality for diagnosis of patients with suspected pulmonary embolism (PE). Radiation dose associated with CTPA has been significantly ...
    • Patient-specific three-dimensional printed pulmonary artery model: A preliminary study
      Aldosari, S.; Squelch, A.; Sun, Zhonghua (2018)
      Background and Objectives: Three-dimensional (3D) printing has potential value in medical applications with increasing reports in the diagnostic assessment of cardiovascular diseases. The use of 3D printing in replicating ...
    • High Pitch Dual-Source Whole Aorta CT Angiography in the Detection of Coronary Arteries: A Feasibility Study of Using Iodixanol 270 and 100 kVp with Iterative Reconstruction
      Shen, Y.; Fan, Z.; Sun, Zhonghua; Xu, L.; Li, Y.; Zhang, N.; Yan, Z. (2015)
      To assess the feasibility of detecting coronary arteries through high-pitch dual-source computed tomography (DSCT) thoracoabdominal angiography when using low-concentration contrast medium, low tube voltage, and iterative ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.