LOFAR reveals the giant: A low-frequency radio continuum study of the outflow in the nearby FR I radio galaxy 3C 31
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
We present a deep, low-frequency radio continuum study of the nearby Fanaroff-Riley class I (FR I) radio galaxy 3C 31 using a combination of LOw Frequency ARray (LOFAR; 30-85 and 115-178 MHz), Very Large Array (VLA; 290-420 MHz), Westerbork Synthesis Radio Telescope (WSRT; 609 MHz) and Giant Metre Radio Telescope (GMRT; 615 MHz) observations. Our new LOFAR 145-MHz map shows that 3C 31 has a largest physical size of 1.1Mpc in projection, which means 3C 31 now falls in the class of giant radio galaxies. We model the radio continuum intensitieswith advective cosmic ray transport, evolving the cosmic ray electron population and magnetic field strength in the tails as functions of distance to the nucleus. We find that if there is no in situ particle acceleration in the tails, then decelerating flows are required that depend on radius r as v a rß (ß ˜ -1). This then compensates for the strong adiabatic losses due to the lateral expansion of the tails. We are able to find selfconsistent solutions in agreement with the entrainment model of Croston & Hardcastle, where the magnetic field provides ˜1/3 of the pressure needed for equilibrium with the surrounding intracluster medium. We obtain an advective time-scale of ˜190 Myr, which, if equated to the source age, would require an average expansion Mach number M˜ 5 over the source lifetime. Dynamical arguments suggest that instead either the outer tail material does not represent the oldest jet plasma or else the particle ages are underestimated due to the effects of particle acceleration on large scales.
Related items
Showing items related by title, author, creator and subject.
-
Gennaro, G.; Van Weeren, R.; Hoeft, M.; Kang, H.; Ryu, D.; Rudnick, L.; Forman, W.; Röttgering, H.; Brüggen, M.; Dawson, W.; Golovich, N.; Hoang, D.; Intema, Hubertus; Jones, C.; Kraft, R.; Shimwell, T.; Stroe, A. (2018)Despite the progress that has been made in understanding radio relics, there are still open questions regarding the underlying particle acceleration mechanisms. In this paper, we present deep 1-4 GHz Very Large Array (VLA) ...
-
Migliari, S.; Miller-Jones, James; Fender, R.; Homan, J.; Di Salvo, T.; Rothschild, R.; Rupen, M.; Tomsick, J.; Wijnands, R.; van der Klis, M. (2007)We present the results of simultaneous radio (VLA) and X-ray (RXTE) observations of the Z-type neutron star X-ray binary GX 17+2. The aim is to assess the coupling between X-ray and radio properties throughout its three ...
-
Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R.; Rafferty, D.; Mechev, A.; Intema, Hubertus; Andrade-Santos, F.; Clarke, A.; Mahony, E.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M. (2018)Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ~650 kpc near the cluster centre ...