Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
The present review rationalizes the significance of the metal oxide semiconductor (MOS) interfaces in the field of photovoltaics and photocatalysis. This perspective considers the role of interface science in energy harvesting using organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs). These interfaces include large surface area junctions between photoelectrodes and dyes, the interlayer grain boundaries within the photoanodes, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to overall power conversion efficiency of solar cells. Similarly, MOS photocatalysts exhibit strong variations in their photocatalytic activities as a function of band structure and surface states. Here, the MOS interface plays a vital role in the generation of OH radicals, which forms the basis of the photocatalytic processes. The physical chemistry and materials science of these MOS interfaces and their influence on device performance are also discussed.
Related items
Showing items related by title, author, creator and subject.
-
Rimboud, Mickael; Hart, Robert; Becker, Thomas; Arrigan, Damien (2011)Arrays of nanoscale interfaces between immiscible electrolyte solutions were formed using siliconnitride nanopore array membranes. Nanopores in the range from 75 nm radius down to 17 nm radiuswere used to form the ...
-
Veder, Jean-Pierre M. (2010)This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
-
He, Shuai; Saunders, M.; Chen, K.; Gao, H.; Suvorova, A.; Rickard, William; Quadir, Zakaria; Cui, C.; Jiang, San Ping (2018)Electrode/electrolyte interface plays a critical role in the performance and stability of solid oxide fuel cells (SOFCs). Here, interface formation, Sr segregation and reaction of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ ...