Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1-2 GHz
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
This is an author-created, un-copy edited version of an article accepted for publication in Astrophysical Journal. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.3847/1538-4357/aa9f13.
Collection
Abstract
We report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to 1 arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright "brush" of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range -0.70 = a = -0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5 µG and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namely M = 3.78+0.3-0.2. The radio halo shows an average spectral index of a = -1.16 ±0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightness.
Related items
Showing items related by title, author, creator and subject.
-
Van Weeren, R.; Intema, Hubertus; Lal, D.; Andrade-Santos, F.; Brüggen, M.; De Gasperin, F.; Forman, W.; Hoeft, M.; Jones, C.; Nuza, S.; Röttgering, H.; Stroe, A. (2014)We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least ...
-
Bonafede, A.; Intema, Hubertus; Brüggen, M.; Vazza, F.; Basu, K.; Sommer, M.; Ebeling, H.; De Gasperin, F.; Röttgering, H.; Van Weeren, R.; Cassano, R. (2015)Radio haloes are synchrotron radio sources detected in some massive galaxy clusters. Their size of Mpc indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters ...
-
Hoang, D.N.; Shimwell, T.W.; Van Weeren, R.J.; Brunetti, G.; Röttgering, H.J.A.; Andrade-Santos, F.; Botteon, A.; Brüggen, M.; Cassano, R.; Drabent, A.; De Gasperin, F.; Hoeft, M.; Intema, Huib ; Rafferty, D.A.; Shweta, A.; Stroe, A. (2019)Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic ...