Radio Galaxy Zoo: CLARAN - A deep learning classifier for radio morphologies
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible.We present CLARAN-Classifying Radio sources Automatically with Neural networks - a proof-of-concept radio source morphology classifier based upon the Faster Region-based Convolutional Neutral Networks method. Specifically, we train and test CLARAN on the FIRST and WISE (Wide-field Infrared Survey Explorer) images from the Radio Galaxy Zoo Data Release 1 catalogue. CLARAN provides end users with automated identification of radio source morphology classifications from a simple input of a radio image and a counterpart infrared image of the same region. CLARAN is the first open-source, endto- end radio source morphology classifier that is capable of locating and associating discrete and extended components of radio sources in a fast (<200 ms per image) and accurate (=90 per cent) fashion. Future work will improve CLARAN's relatively lower success rates in dealing with multisource fields and will enable CLARAN to identify sources on much larger fields without loss in classification accuracy.
Related items
Showing items related by title, author, creator and subject.
-
Muller, C.; Kadler, M.; Ojha, R.; Böck, M.; Krauß, F.; Taylor, G.; Wilms, J.; Blanchard, J.; Carpenter, B.; Dauser, T.; Dutka, M.; Edwards, P.; Gehrels, N.; Großberger, C.; Hase, H.; Horiuchi, S.; Kreikenbohm, A.; Lovell, J.; McConville, W.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J.; Ros, E.; Schulz, R.; Stevens, J.; Tingay, Steven; Trüstedt, J.; Tzioumis, A.; Zensus, J. (2014)Context. We investigate the nature and classification of PMNJ1603-4904, a bright radio source close to the Galactic plane, which is associated with one of the brightest hard-spectrum ?-ray sources detected by Fermi/LAT. ...
-
Kapiñska, A.; Terentev, I.; Terentev, W.; Shabala, S.; Shabala, A.; Rudnick, L.; Storer, L.; Banfield, J.; Willett, K.; Willett, F.; Willett, C.; Willett, A.; Middelberg, E.; Norris, R.; Norris, K.; Seymour, Nick; Simmons, B. (2017)Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a ...
-
Banfield, J.; Wong, O.; Willett, K.; Norris, R.; Rudnick, L.; Shabala, S.; Simmons, B.; Snyder, C.; Garon, A.; Seymour, Nick; Middelberg, E.; Andernach, H.; Lintott, C.; Jacob, K.; Kapinska, A.; Mao, M.; Masters, K.; Jarvis, M.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.; Bamford, S.; Burchell, T.; Chow, K.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T.; Kaviraj, S.; López-Sánchez, R.; Maksym, W.; Polsterer, K.; Borden, K.; Hollow, R.; Whyte, L. (2015)We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the ...